Generalized ordinal sums and translations

NIKOLAOS GALATOS, Department of Mathematics, University of Denver, 2360 S. Gaylord St., Denver, CO 80208, USA.
E-mail: ngalatos@du.edu

Abstract

We extend the lattice embedding of the axiomatic extensions of the positive fragment of intuitionistic logic into the axiomatic extensions of intuitionistic logic to the setting of substructural logics. Our approach is algebraic and uses residuated lattices, the algebraic models for substructural logics. We generalize the notion of the ordinal sum of two residuated lattices and use it to obtain embeddings between subvariety lattices of certain residuated lattice varieties. As a special case we obtain the above mentioned embedding of the subvariety lattice of Brouwerian algebras into an interval of the subvariety lattice of Heyting algebras. We describe the embeddings both in model theoretic terms, focusing on the subdirectly irreducible algebras, and in syntactic terms, by showing how to translate the equational bases of the varieties.

Keywords: Residuated lattices, FL-algebras, ordinal sum, variety

1 Introduction

It is well known that the subvariety lattice of Brouwerian algebras is properly contained in the subvariety lattice of Heyting algebras. The exact connection is given by the following result, essentially due to Jankov. Let CL denote classical propositional logic, Int intuitionistic propositional logic, Int⁺ the positive (\{0, ¬\}-free) fragment of Int, and KC the logic of weak excluded middle, axiomatized relative to intuitionistic logic by ¬p ∨ ¬¬p.

Theorem 1.1 ([12]). The lattice of axiomatic extensions of Int⁺ is isomorphic to the interval [KC, CL] in the lattice of superintuitionistic logics.

Using the algebraization correspondence between superintuitionistic logics and subvarieties of Heyting algebras, as well as between axiomatic extensions of Int⁺ and subvarieties of Brouwerian algebras (the varieties form algebraic semantics for the corresponding logics), the above theorem can be restated as follows. We denote by BA, Br, HA, and KC the varieties of Boolean algebras, Brouwerian algebras, Heyting algebras and the subvariety of HA axiomatized by ¬x ∨ ¬¬x = 1, respectively.

Theorem 1.2. The subvariety lattice of Br is isomorphic to the interval [BA, KC] in the subvariety lattice of HA.

By adding a bottom element to a Brouwerian algebra A we obtain a Heyting algebra 2 ⊕ A —the ordinal sum (see below) of the two-element Boolean algebra and A; note that not all Heyting algebras are obtained in this way.
Generalized ordinal sums and translations

Let Br_2 denote the variety generated by all Heyting algebras of the form $2 \oplus A$, where $A \in Br$; we will show that it is actually enough to consider only subdirectly irreducible A‘s. The following theorem partially explains Jankov’s result.

Theorem 1.3. $Br_2 = KC$.

Superintuitionistic logics, and their positive fragments, are special cases of substructural logics. Also, (pointed) residuated lattices, the algebraic semantics of the latter, generalize Heyting and Brouwerian algebras. In particular, a Brouwerian algebra can be defined as an integral ($x \leq 1$) commutative ($xy = yx$) residuated lattice $B = (B, \wedge, \vee, \cdot, \rightarrow, 1)$ that satisfies $xy = x \wedge y$. Also, a Heyting algebra is an integral commutative FL$_o$-algebra $B = (B, \wedge, \vee, \cdot, \rightarrow, 1, 0)$ that satisfies $xy = x \wedge y$.

We will show that the above lattice embedding (viewed in the setting of logics or varieties) is a special case of similar embeddings in the more general context of substructural logics and residuated lattices. Note that the above embedding was given in a model-theoretic/algebraic way, as well as in an axiomatic one (at least for KC/KC). We show that the same is possible for all axiomatic extensions/subvarieties in our general setting. In particular, we will show that the lattice of integral and commutative residuated lattice varieties is isomorphic to the interval $[BA, ICRL_2]$ in the subvariety lattice of FL$_{w}$, where ICRL$_2$ is generated by all algebras of the form $2 \oplus A$, where A is an integral, commutative residuated lattice. Moreover, we will show that ICRL$_2$ is axiomatized relative to FL$_{w}$ by $\neg x \vee \neg \neg x = 1$. Jankov’s result then follows as a corollary. Our results also extend to the non-commutative case.

The ordinal sum $A \oplus B$ of two integral residuated chains A, B can also be viewed as $A[B]$, the algebra obtained by replacing the identity element of A by B. (In that sense the construction $A[B]$, where A and B are not integral, can be viewed as a generalization of the ordinal sum construction.) For example, totally ordered product algebras can be thought of as $2 \oplus A$, where A is the negative cone of a totally ordered abelian group.

The construction also extends to the non-integral case. For example, standard representable uninorm algebras (RU-algebras) are of the form $To_1[G]$, where G is an abelian group and To_1 is the unique non-integral 3-element (commutative) FL$_o$-algebra. In Theorem 6.10 we provide an axiomatization for this variety.

We consider, in general, similar constructions $K[L]$, where K is an appropriate FL$_o$-algebra and L a residuated lattice. The congruence lattice of $K[L]$ is closely related to those of K and L. Moreover, the ‘operator’ K is functorial and commutes with homomorphic images, subalgebras and ultraproducts. The paper makes crucial use of the results in [6] and [5]. A partial preview of the results was given in [7].

2 Preliminaries

A residuated lattice is an algebra of the form $A = (A, \wedge, \vee, \cdot, \rightarrow, 1)$ where (A, \wedge, \vee) is a lattice, $(A, \cdot, 1)$ is a monoid and the following residuation property holds for all $x, y, z \in A$

$$xy \leq z \iff x \leq z/y \iff y \leq x \setminus z.$$

A residuated lattice is called commutative, if its monoid reduct is commutative; i.e., if it satisfies the identity $xy = yx$. It is called integral, if its lattice reduct has a top element.
and the latter coincides with the multiplicative identity 1; i.e., if it satisfies $x \leq 1$. It is called contractive, if it satisfies the identity $x \leq x^2$. We denote the corresponding varieties by RL, CRL, IRL, KRL. A residuated lattice is called cancellative, if the underlying monoid is cancellative. Cancellative residuated lattices form a variety that is denoted by $CanRL$. If a residuated lattice is a subdirect product of chains (totally ordered algebras) it is called representable, or semilinear. Representable residuated lattices form a variety that we denote by RRL.

An FL-algebra, or pointed residuated lattice, is an expansion of a residuated lattice with a constant 0; FL denotes a variety of FL-algebras. Although RL and FL have different signatures, we identify RL with the subvariety of FL axiomatized by 0 = 1. All of the above properties for residuated lattices apply also to FL-algebras, and we denote the corresponding varieties by FL_e, FL_l, FL_c, $CanFL$ and RFL. In an FL-algebra, we define $\sim x = x/0$ and $\sim x = 0/x$. If the FL-algebra is commutative then $a \backslash b = b/a$, and $\sim a = -a$, for all a, b; in this case we write $a \rightarrow b$ and $-a$, respectively. We define FL_o-algebras as FL-algebras that satisfy $0 \leq x$. FL_o-algebras are FL$_{io}$-algebras. We denote the corresponding varieties by FL_o and FL_w. In FL_o-algebras we often write \perp for the smallest element. Note that every FL_o-algebra satisfies $x \leq \perp / \perp$, so it has a top element, which we denote by \top.

We allow combinations of prefixes and subscripts, so for example, $IKRL$ is the variety of integral, contractive residuated lattices. It turns out that such residuated lattices are also commutative and they are term equivalent to Brouwerian algebras. We also denote this variety by Br. Likewise we set $HA = FL_d$, the variety of Heyting algebras.

A lattice ordered group, or ℓ-group, can be defined as a residuated lattice that satisfies $x(x \backslash 1) = 1$. We denote the corresponding variety by LG. It is well known that CLG is generated by the integers and, therefore, $CLG \subseteq RRL$.

Let L be a residuated lattice and Y a set of variables. For $y \in Y$ and $x \in L \cup Y \cup [1]$, the polynomials

$$
\rho_x(y) = xy / x \land 1 \quad \text{and} \quad \lambda_y(y) = x \land y x / 1,
$$

are, respectively, the right and left conjugate of y with respect to x. An iterated conjugate is a composition of a number of left and right conjugates. For any X, A subsets of $L \cup Y \cup [1]$, and for $m \in \mathbb{N}$, we define the sets

$$
\Gamma_X = \{ \gamma_\pi \circ \gamma_\sigma \circ \ldots \gamma_m : m \in \mathbb{N}, \gamma_i \in \{ \lambda, \rho \}, x_i \in X \cup [1], i \in \mathbb{N} \},
$$

$$
\Gamma_X(A) = \{ \gamma(a) : \gamma \in \Gamma_X, a \in A \}.
$$

Conjugates play an important role in the characterization of congruences in residuated lattices; see for example [7]. A normal subset is defined as one that is closed under conjugation. The convex, normal subalgebras of a residuated lattice are in bijective correspondence with its congruences. The same holds for congruences of an FL-algebra and convex, normal subalgebras of its 0-free reduct.

Recall that an algebra is called strictly simple, if it has no proper, non-trivial subalgebras or homomorphic images. Note that for residuated lattices, the lack of subalgebras forces the absence of homomorphic images. A strictly simple FL_o-algebra is, thus, generated by each of its non-identity elements.
A substructural logic is defined as an axiomatic extension of FL, the (set of theorems of) full Lambek calculus. It is shown in [8] that FL is the equivalent algebraic semantics for FL and that the same holds for substructural logics and subvarieties of FL. Actually, there is a dual lattice isomorphism between the lattice of substructural logics and the subvariety lattice \(\Lambda_1(\text{FL}) \) of FL. See [7] for more details on residuated lattices, FL-algebras, the full Lambek calculus and substructural logics.

3 Ordinal sums

We call an element \(a \) in an algebra \(A \) irreducible with respect to an \(n \)-ary operation \(f \) of \(A \), if, for all \(a_1, a_2, \ldots, a_n \in A \), \(f(a_1, a_2, \ldots, a_n) = a \) implies \(a_i = a \), for some \(i \).

Let \(K \) and \(L \) be residuated lattices and assume that the identity element \(1_K \) of \(K \) is \(\{\land, \lor, \cdot\} \)-irreducible; also, assume that either \(L \) is integral, or \(1 \neq k_1/k_2 \) and \(1 \neq k_2/k_1 \) for \(k_1, k_2 \in K \), unless \(k_1 = k_2 = 1 \). In this case we say that \(K \) is admissible by \(L \). This is a slight generalization of the definition in [6]. A class \(K \) is admissible by a class \(L \), if every algebra of \(K \) is admissible by every algebra of \(L \).

Let \(K[L] = (K - \{1_K\}) \cup L \), and extend the operations of \(K \) and \(L \) to \(K[L] \) by

- \(l \star k = 1_K \star_K k \) and \(k \star l = k \star_K 1_K \), for \(k \in (K - \{1_K\}) \), \(l \in L \) and \(\star \in \{\land, \lor, \cdot, \\}/ \), in case \(1_K \star_K k, k \star_K 1_K \in K - \{1_K\} \).
- In case \(1_K \star_K k = 1_K \), then \(l \star k = l \), if \(\star \in \{\land, \lor\} \), and \(l / k = 1_L \) (in this last case \(L \) is integral, by admissibility); likewise we define \(k \star l \).

We define the algebra \(K[L] = (K[L], \land, \lor, \cdot, \\), \(1_L \) \). The following lemma is a slight generalization of the corresponding lemma in [6].

Lemma 3.1. Assume that \(K, L \) are residuated lattices such that \(K \) is admissible by \(L \). Then, the algebra \(K[L] \) is a residuated lattice.

\(^1\)This case did not appear explicitly in [6] by mistake.
We extend the above construction to the case where K is an FL-algebra. In this case we expand $K[L]$ to an FL-algebra by a constant that evaluates to 0_K (or to 1_L, if $0_K = 1_K$). Also, in case L is an FL-algebra, we consider its 0-free reduct, before performing the construction.

Note that if both K and L are integral and 1_K is join-irreducible, then K is admissible by L. In this case (usually considered in the context of totally ordered algebras), the algebra $K[L]$ is called the \textit{ordinal sum} of K and L and is usually denoted by $K \oplus L$. In this sense, in the absence of integrality (for K at least), the algebra $K[L]$ can be considered as a \textit{generalized} ordinal sum of the two algebras. The ordinal sum construction has been used, among other structures, for BL-algebras [1] and hoops [2].

\textbf{Lemma 3.2 ([6])}. Assume that K, L are residuated lattices such that K is admissible by L. Then,

- the congruence lattice of $K[L]$ is isomorphic to the coalesced ordinal sum3 of the congruence lattice of L and the congruence lattice of K.
- Thus, $K[L]$ is subdirectly irreducible iff L is subdirectly irreducible, or $L \cong 1$ and K is subdirectly irreducible.

The 2-element FL\textsubscript{oe}-algebra (Boolean algebra) 2 is admissible by all integral residuated lattices. Examples of FL\textsubscript{oe}-algebras that are admissible by all residuated lattices are given in Figure 2 and they include T_0_n, for n a positive natural number, and N_w, for w an infinite or

2This notion is different from the (poset) ordinal sum of two posets P and Q, which is defined to be the poset with underlying set $P \cup Q$ and order relation containing the orders of P and Q, and setting every element of P less than every element of Q; so the new order is $\leq_P \cup \leq_Q \cup (P \times Q)$.

3The coalesced ordinal sum of two posets P and Q (Q is assumed to have a top element and Q a bottom element) is defined by identifying in the (poset) ordinal sum of P and Q the top element of P with the bottom element of Q.

\begin{figure}[h]
\centering
\begin{tikzpicture}
 \node (a1) at (0,0) {0};
 \node (a2) at (0,1) {1};
 \node (a3) at (0,2) {$\top \setminus 1 \cup u$};
 \node (a4) at (0,3) {\top};
 \node (b1) at (1.5,0) {0};
 \node (b2) at (1.5,1) {1};
 \node (b3) at (1.5,2) {u^2};
 \node (b4) at (1.5,3) {u^3};
 \node (b5) at (1.5,4) {$u^n = 0$};
 \node (b6) at (1.5,5) {$b_0 = 0$};
 \node (b7) at (1.5,6) {b_1};
 \node (b8) at (1.5,7) {b_2};
 \node (b9) at (1.5,8) {b_3};

 \draw (a1) -- (a2) -- (a3) -- (a4);
 \draw (b1) -- (b2) -- (b3) -- (b4) -- (b5) -- (b6) -- (b7) -- (b8) -- (b9);

 \node at (2.75,0) {2};
 \node at (2.75,1) {T_0_n};
 \node at (2.75,2) {N_w};
\end{tikzpicture}
\caption{Admissible FL\textsubscript{oe}-algebras.}
\end{figure}
bi-infinite word; see [6] for the definitions. We will be interested in T_0, which is the unique 3-element non-integral FL$_0$-algebra.

Two special cases of the construction $K[L]$ were considered in [9] for embedding a residuated lattice into a bounded one; $2[L]$, if L is integral, and $T_0[L]$, for arbitrary L.

4 Functoriality

The construction $K[L]$ is functorial, namely it extends to homomorphisms. Let L_1 and L_2 be residuated lattices, let K be admissible by both L_1 and L_2, and let $f:L_1 \to L_2$ be a homomorphism. We define $K[f]:K[L_1] \to K[L_2]$ as constant on $K - \{1_K\}$ and as f on L_1.

Lemma 4.1. If L_1 and L_2 are residuated lattices, K is admissible by both L_1 and L_2, and $f:L_1 \to L_2$ is a homomorphism, then $K[f]:K[L_1] \to K[L_2]$ is a homomorphism, as well.

Therefore, K defines a functor from every category \mathcal{L} of residuated lattices to $K[\mathcal{L}]$.

Proposition 4.1. Let \mathcal{L} be a variety of residuated lattices, and let K be a strictly simple FL$_0$-algebra. Then the functor K is full and faithful.

Proof. To show that K is full we need to show that for every homomorphism $g:K[L_1] \to K[L_2]$, where $L_1, L_2 \in \mathcal{L}$, there is a homomorphism $f:L_1 \to L_2$ such that $g = K[f]$. As $0 = \bot$ is a constant in the language and K is a strictly simple, all its elements are definable (they are in the subalgebra generated by \bot), hence g is constant on $K - \{1_K\}$. Moreover, as K is strictly simple, for every element $k \neq 1_K$, there is a 0-free term t_k such that $t_k(k) = \bot$. If $g(a) \neq L_2$, for some $a \in L_1$, then $g(t_{g(a)}(a)) = t_{g(a)}(g(a)) = \bot$. Hence, in this case, there is a $c = t_{g(a)}(a) \in L_1$ such that $g(c) = \bot$. But then

$$\bot = g(\bot) = g(\bot/c) = g(\bot)/g(c) = g(\bot)/g(\bot) = \bot/\bot = \top,$$

a contradiction. Therefore, $g[L_1] \subseteq L_2$, and the restriction f of g on L_1 defines the desired homomorphism.

Moreover, K is faithful, namely if $f_1, f_2:L_1 \to L_2$ are homomorphisms, and $K[f_1] = K[f_2]$, then $f_1 = f_2$, as f_1 and f_2 are determined by their restrictions on L_1. \hfill \square

5 The embedding

We will first describe the embedding of subvariety lattices by giving a generating set of the target variety. Recall that if \mathcal{K} is a class of similar algebras, $S(\mathcal{K}), H(\mathcal{K}), P(\mathcal{K}), P_u(\mathcal{K}), I(\mathcal{K})$ denote, respectively, the classes of subalgebras, homomorphic images, products, ultraproducts, isomorphic images of elements of \mathcal{K}; $V(\mathcal{K}) = HSP(\mathcal{K})$, and \mathcal{K}_S is the class of subdirectly irreducible algebras in \mathcal{K}.

Let S be a class of residuated lattices and K a finite, strictly simple FL$_0$-algebra admissible by S. We define $S_K = V(K[S])$.

Lemma 5.1 ([6]). Assume that \mathcal{L} is a class of residuated lattices and that K is a finite strictly simple residuated lattice admissible by \mathcal{L}. Then,

1. $O(K[L]) = K[O(\mathcal{L})]$, where the operator O is any of the operators IP_u, S or H. (We use the same symbol O for the operators on subclasses of RL and FL_0).
We will now provide an axiomatization for certain varieties of the form

\[\text{Axiomatization} \]

Hence

\[\text{Corollary 5.2.} \]

If \(V \) is a finite, strictly simple \(FL_o \)-algebra admissible by a variety \(V \) of residuated lattices, then \(V \) is a subvariety of \(V_k \).

\[\text{Theorem 5.3.} \]

Let \(V \) be a finite, strictly simple \(FL_o \)-algebra admissible by \(RL \). The subvariety lattice \(A(\mathcal{RL}) \) of \(RL \) is isomorphic to the interval \([V(K), RL_{\mathcal{K}}] \) of \(A(\mathcal{FL}_o) \) via the map \(V \mapsto V_k \).

\[\text{Proof.} \]

Let \(V \) be a subvariety of \(RL \). Employing Lemma 5.1(2), we have

\[(V_k)_{\mathcal{S}} = (V(K))_{\mathcal{S}} \cup I(K) \]

Thus, \(V(K) \subseteq RL_{\mathcal{K}} \), and the map is order preserving. Moreover, if \(V_k \subseteq U_k \), then \(V(K) \cup I(K) \subseteq V \) and \(V(K) \subseteq V \); hence \(V \subseteq U \) and the map reflects the order.

If \(V \subseteq RL_{\mathcal{K}} \) contains \(K \), then \(V_{\mathcal{S}} \subseteq (RL_{\mathcal{K}})_{\mathcal{S}} = K[RL_{\mathcal{S}}] \cup I(K) \), so \(V_{\mathcal{S}} = K[\mathcal{S}] \cup I(K) \), for some \(\mathcal{S} \subseteq RL_{\mathcal{S}} \). Clearly \(V = V(K[\mathcal{S}] \cup I(K)) \) and

\[V_{\mathcal{S}} = (V(K[\mathcal{S}] \cup I(K)))_{\mathcal{S}} = (V(K[\mathcal{S}]))_{\mathcal{S}} \cup I(K) = (V(K))_{\mathcal{S}} \cup I(K) = (V(K))_{\mathcal{S}} \cup I(K) = (V(K))_{\mathcal{S}} \cup I(K) \]

Hence \(V = (V(S))_{\mathcal{K}} \) and the map is onto.

\[\text{Corollary 5.4.} \]

The subvariety lattice \(A(\mathcal{RL}) \) of \(RL \) is isomorphic to the interval \([V(T_n), RL_{|\mathcal{N}|}] \) of \(A(\mathcal{FL}_o) \) via the map \(V \mapsto V_{T_n} \), for every \(n \).

The same argument works for the algebra \(2 \), for integral residuated lattices, so we have the following result.

\[\text{Theorem 5.5.} \]

The subvariety lattice \(A(\mathcal{IRL}) \) of \(IRL \) is isomorphic to the interval \([V(2), IRL_2] \) of \(A(\mathcal{FL}_o) \) via the map \(V \mapsto V_2 \).

6 Axiomatization

We will now provide an axiomatization for certain varieties of the form \(V_k \) in terms of an axiomatization of \(V \).

An open positive universal formula in a given language is an open first order formula that can be written as a disjunction of conjunctions of equations in the language. A (closed) positive universal formula is the universal closure of an open one.

\[\text{Lemma 6.1 ([5]).} \]

Every open (closed) positive universal formula, \(\phi \), in the language of residuated lattices is equivalent to (the universal closure of) a disjunction \(\phi' \) of equations of the form \(1 = r \), where the evaluation of the term \(r \) is negative in all residuated lattices.
Generalized ordinal sums and translations

Recall the definition of the set \(\Gamma_1 \) of iterated conjugates over a countable set of variables \(Y \). For a positive universal formula \(\phi(\bar{x}) \) and for \(Y \) disjoint from \(\bar{x} \), we define the sets of residuated-lattice equations

\[
B_Y(\phi'(\bar{x})) = \{ 1 = \gamma_1(r_1(\bar{x})) \lor \ldots \lor \gamma_n(r_n(\bar{x})) \mid \gamma_i \in \Gamma_1 \}
\]

where \(n \in \mathbb{N} \) and

\[
\phi'(\bar{x}) = (r_1(\bar{x}) = 1) \quad \text{or} \quad \ldots \quad \text{or} \quad (r_n(\bar{x}) = 1)
\]
is a formula equivalent to \(\phi(\bar{x}) \), as in Lemma 6.1. If we enumerate the set \(Y = \{ y_i : i \in I \} \), where \(I \subseteq \mathbb{N} \), and insist that the indices of the conjugating elements of \(Y \) in \(\gamma_1, \gamma_2, \ldots, \gamma_n \) appear in the natural order and they form an initial segment of the natural numbers, then we obtain a subset of \(B_Y(\phi'(\bar{x})) \), which is equivalent to the latter. So without loss of generality we will make this assumption.

Corollary 6.2 ([5]). Let \(\{ \phi_i : i \in I \} \) be a collection of positive universal formulas. Then,

\[
\bigcup \{ B(\phi'_i) : i \in I \}
\]
is an equational basis for the variety generated by the (subdirectly irreducible) residuated lattices that satisfy all \(\phi_i \), for \(i \in I \).

Recall that the variety \(RRL \) of representable residuated lattices is generated by the class of all totally ordered residuated lattices. An axiomatization for \(RRL \) was given in [3] and [13]. Here we show how to derive this axiomatization, using Corollary 6.2.

Corollary 6.3 ([3, 13]). The variety \(RRL \) (\(RFL_\omega \)) is axiomatized by the 4-variable identity

\[
\lambda_x((x \lor y) \setminus x) \lor \rho_y((x \lor y) \setminus y) = 1.
\]

Proof. The variety \(RRL \) is clearly generated by the class of all subdirectly irreducible totally ordered residuated lattices. A subdirectly irreducible residuated lattice is totally ordered if it satisfies the universal first-order formula

\[
(\forall x, y)(x \leq y \text{ or } y \leq x).
\]
The first order formula can also be written as

\[
(\forall x, y)(1 = [(x \lor y) \setminus x] \land 1 \text{ or } 1 = [(x \lor y) \setminus y] \land 1).
\]
By Corollary 6.2, \(RRL \) is then axiomatized by the identities

\[
1 = \gamma_1([(x \lor y) \setminus x] \land 1) \lor \gamma_2([(x \lor y) \setminus y] \land 1),
\]
where \(\gamma_1 \) and \(\gamma_2 \) range over arbitrary iterated conjugates. Actually, since \(\gamma(t \land 1) \leq \gamma(t) \), for every iterated conjugate \(\gamma \), if

\[
1 = \gamma_1([(x \lor y) \setminus x] \land 1) \lor \gamma_2([(x \lor y) \setminus y] \land 1)
\]
holds, then

\[
1 = \gamma_1((x \lor y) \setminus x) \lor \gamma_2((x \lor y) \setminus y)
\]
holds, as well. The converse is also true if γ_1 and γ_2 range over arbitrary iterated conjugates, since for example $\lambda_1(t) = t \wedge 1$. Therefore, \textbf{RRL} is axiomatized by the identities

$$1 = \gamma_1((x \vee y) \setminus x) \vee \gamma_2((x \vee y) \setminus y),$$

where γ_1 and γ_2 range over arbitrary iterated conjugates.

Conversely, the variety axiomatized by this identity clearly satisfies the implications

$$x \vee y = 1 \Rightarrow \lambda_1(x) \vee y = 1 \quad x \vee y = 1 \Rightarrow x \vee \rho_w(y) = 1.$$

By repeated applications of this implications on the identity

$$\lambda_1((x \vee y) \setminus x) \vee \rho_w((x \vee y) \setminus y) = 1,$$

we can obtain

$$1 = \gamma_1((x \vee y) \setminus x) \vee \gamma_2((x \vee y) \setminus y),$$

for any pair of iterated conjugates γ_1 and γ_2. \qed

Corollary 6.4 (c.f. [3, 10, 13]). The variety \textbf{RCRL}_{ω} is axiomatized by the identity $(y \rightarrow x)_{\gamma_1} \vee (x \rightarrow y)_{\gamma_2} = 1$.

6.1 The integral case

We first give axiomatizations for integral varieties. In this case $\mathbf{K} = \mathbf{2}$.

Theorem 6.5. The variety \textbf{IRL}_2 is axiomatized relative to \textbf{FL}_w by the set of identities $\gamma_1(\sim x) \vee \gamma_2(\sim \sim x) = 1$, where γ_1 and γ_2 range over iterated conjugates. Also, \textbf{ICRL}_2 is axiomatized relative to $\textbf{FL}_{w\omega}$ by the identity $\sim x \vee \sim \sim x = 1$.

Proof. First note that an \textbf{FL}_w-algebra A is of the form $2[B]$, for $B \in \textbf{IRL}$, iff $A^* = A - \{0\}$ is a 0-free subalgebra of A. Since the join and residual of two elements of A^* is always in A^* and since closure under multiplication implies closure under meet, this is equivalent to A^* being closed under product.

We claim that this is in turn equivalent to the stipulation that A satisfies the first order formula $(\forall x)(x = 0 \text{ or } \sim x = 0)$. Indeed, let $x, y \in A^*$ be such that $xy = 0$ and suppose that A satisfies the first order formula. Then $y \leq x, 0 \sim x$ and $\sim x = 0$, so $y = 0$, a contradiction. Conversely, if A^* is closed under product then, since $x(\sim x) = 0$, we have $x = 0$ or $\sim x = 0$.

By Lemma 5.1(2), the set of subdirectly irreducible algebras in \textbf{IRL}_2 is exactly $2[\textbf{IRL}_2] \cup I(2)$. In view of Lemma 3.2, these are exactly the subdirectly irreducible algebras in \textbf{FL}_w that satisfy the first order formula $(\forall x)(x = 0 \text{ or } \sim x = 0)$.

By Corollary 6.2, the subvariety of \textbf{FL}_w whose subdirectly irreducible algebras satisfy the positive universal formula $(\forall x)(x = 0 \text{ or } \sim x = 0)$, or equivalently the formula $(\forall x)(1 \leq x, 0 \text{ or } 1 \leq (x')0 \setminus 0)$, is axiomatized by the set of identities $\gamma_1(\sim x) \vee \gamma_2(\sim \sim x) = 1$, where γ_1 and γ_2 range over iterated conjugates. In the commutative case, the conjugates are not needed. \qed
Generalized ordinal sums and translations

We will now axiomatize all the varieties in the interval $[\text{V}(2), \text{IRL}]$. Every equation $s = t$ over residuated lattices is equivalent to the equation $1 \leq s \land t \land s$. If E is a set of equations, we denote by E' the set of the equations obtained from E by the above process.

Theorem 6.6. If \mathcal{V} is a subvariety of IRL axiomatized by a set of equations E, then \mathcal{V}_2 is axiomatized, relative to IRL_2 by

$$1 = y_1(\neg x_1) \lor \cdots \lor y_n(\neg x_n) \lor \gamma(t(x_1, \ldots, x_n))$$

where $1 \leq t \in E'$ and γ's range over all iterated conjugates.

Proof. In view of Theorem 6.5, the class $2[\mathcal{V}]$ is axiomatized relative to $2[\text{IRL}]$ by the set first-order formulas of the form

$$x_1 = 0 \lor \cdots \lor x_n = 0 \lor 1 \leq t(x_1, \ldots, x_n)$$

where $1 \leq t \in E'$. By Corollary 6.1, we obtain the desired axiomatization for \mathcal{V}_2. □

Corollary 6.7. If \mathcal{V} is a subvariety of ICRL axiomatized by a set of equations E, then \mathcal{V}_2 is axiomatized, relative to ICRL_2 by

$$\neg x_1 \lor \cdots \lor \neg x_n \lor t(x_1, \ldots, x_n)$$

where $1 \leq t \in E'$.

Recall that the logic KC of weak excluded middle is the extension of intuitionistic logic axiomatized by the formula $\neg p \lor \neg \neg p$. We denote the corresponding subvariety of HA by KC. Jankov’s result, Theorem 1.2/1.1, then follows from the following corollary.

Corollary 6.8. The subvariety lattice $\Lambda(\text{Br})$ of the variety Br of Brouwerian algebras is isomorphic to the interval $[\text{BA}, \text{KC}]$ of $\Lambda(\text{HA})$ via the map $\mathcal{V} \mapsto \mathcal{V}_2$.

Another special case was considered in [11]. The varieties RICRL_2 and CanRICRL_2 were axiomatized as what are known as SMTL and PMTL, respectively.

6.2 The non-integral case

We now give an application to the non-integral case, for $K = \text{To}_1$.

Theorem 6.9. The variety LG_{To_1} is axiomatized, relative to FL_0, by $\top \land 1 = \bot$ and $\gamma((\neg x) \lor y_2((\top \land x)) \lor y_3(x(\land 1) \land (x \lor 1)(x \lor 1) \land 1)) = 1$, where γ's range over iterated conjugates.

Proof. It suffices to show that the class $\text{To}_1[\text{LG}]$ is axiomatized by

$$x = \bot \lor x = \top \lor (x(\land 1) = 1 \land (x \lor 1)(x \lor 1) \land 1) = 1$$

It is easy to see that every algebra of the form $\text{To}_1[\mathcal{B}]$, where $\mathcal{B} \in \text{LG}$, satisfies the above first order formula.
Conversely, assume that the non-trivial (has more than 1 element) FL\text{\textscript{o}}-algebra \(A \) satisfies the above formula, and let \(A^* = A - \{\bot, \top\} \). We will show that \(A^* \) is a subalgebra of \(A \); then it will follow that \(A = \mathbf{T}_{\bot}[A^*] \). In the following we will write \(a' \) for \(a/1 \). Let \(x, y \in A^* \\
\text{•} \ \top \neq 1. \text{ Indeed, otherwise } \bot = \top \setminus 1 = 1 \setminus 1 = 1. \text{ As } A \text{ is not trivial, } 1 \neq \bot, \text{ since 1 is a neutral and } \bot \text{ is an absorbing element.} \\
\text{•} \ x' \neq \bot, \text{ as otherwise } 1 = xx' = x \bot = \bot. \text{ Likewise, } y' \neq \bot. \\
\text{•} \ 1/x = x'. \text{ Indeed, } x'x = xx' = 1 \text{ implies } x' \leq 1/x, \text{ and } x(1/x)x \leq x1 = x \text{ implies } x(1/x) = x(1/x)xx' \leq xx' = 1, \text{ namely } 1/x \leq x \setminus 1 = x'. \text{ Likewise, } 1/y = y'. \\
\text{•} \ \top x \neq x, \text{ since otherwise } 1 = xx' = \top xx' = \top, \text{ a contradiction.} \\
\text{•} \ xy \neq \top, \text{ since otherwise } x = \top y', \text{ hence } x = \top y' = \top \top y' = \top x, \text{ a contradiction.} \\
\text{•} \ x' \neq \top, \text{ since otherwise } 1 = xx' = x \top, \text{ hence } \top = x \top \top = x \top = 1, \text{ a contradiction.} \\
\text{•} \ xy \neq \bot, \text{ as otherwise } 1 = x'xy' = x' \bot y' = \bot. \\
\text{•} \ x \top \neq \top, \text{ since otherwise } \top \top' = 1, \text{ and } 1 = \top \top' = \top \top' = \top. \\
\text{•} \ x \lor y \neq \top, \text{ since otherwise } \top = (x \lor 1) \lor (y \lor 1) \leq (x \lor 1)(y \lor 1). \text{ This is a contradiction, as } x \lor 1, y \lor 1 \in A^* \text{ and } \top \text{ is not the product any two elements of } A^*. \\
\text{•} \ x \lor y \neq \bot, \text{ since otherwise } (x \lor 1)(y \lor 1) \leq (x \lor 1) \lor (y \lor 1) \leq \bot. \text{ This is a contradiction, as } x \lor 1, y \lor 1 \in A^* \text{ and } \bot \text{ is not the product any two elements of } A^*. \\
\text{•} \ x/y = xy' \text{ and } y/x = y'x. \text{ Indeed, for all } z \in A, \ z \leq x/y \iff zy \leq x \iff z \leq y'. \\
\text{•} \ x/y, y \setminus x \in A^*, \text{ since } y' \in A^*. \\
Thus, \(A^* \) is closed under all the operations. \(\square \)

Note that the simpler axiomatization

\[
x = \bot \text{ or } x = \top \text{ or } x(\bot \setminus 1) = 1
\]

does not exclude algebras \(A \), where \(A = \{\bot, \top\} \cup G \), where \(G \) is any group and the elements of \(G \) form an antichain in \(A \).

Corollary 6.10. The variety \(\mathbf{CLG}_{\text{To}} \) is axiomatized, relative to \(\mathbf{FL}_{\text{To}} \), by \(\top \rightarrow 1 = \bot \) and \((\neg x)_{\bot} \lor (\top \rightarrow x)_{\bot} \lor [x(\bot \setminus 1) \lor (x \lor 1) \lor ((x \lor 1) \setminus 1)] = 1 \). Alternatively, it is axiomatized relative to \(\mathbf{FRL}_{\text{To}} \) by \(\top \rightarrow 1 = \bot \) and \((\neg x)_{\bot} \lor (\top \rightarrow x)_{\bot} \lor [x(\bot \setminus 1) = 1 \lor (x \lor 1) \lor ((x \lor 1) \setminus 1)] = 1 \).

Proof. The first axiomatization follows from Theorem 6.9. We now consider the second axiomatization. By Corollary 5.2, it is enough to consider the subdirectly irreducible abelian \(\ell \)-groups, which are all totally ordered. Therefore, in view of Lemma 5.1, the subdirectly irreducible algebras in \(\mathbf{CLG}_{\text{To}} \) are totally ordered, hence \(\mathbf{CLG}_{\text{To}} \) is a subvariety of \(\mathbf{FRL}_{\text{To}} \). The extra term \((x \lor 1)(x \lor 1) \setminus 1 \) in the first axiomatization was used in the part of the proof that showed closure under the lattice operations. However, this is clear in the totally ordered case, hence the simplified axiomatization suffices. \(\square \)

The variety \(\mathbf{CLG}_{\text{To}} \) is known as the variety of \(\text{RU-algebras} \) (representable uninorm algebras), see for example [4] and [14]. It is known that the variety is actually generated by any of its infinite members and a different axiomatization is known. The variety \(\mathbf{LG}_{\text{To}} \) can be thought of as a non-commutative generalization of RU-algebras.
Acknowledgements

The author would like to thank the two anonymous referees and Wojciech Dzik for their helpful suggestions on the manuscript.

References

Received 31 March 2009