Octonionic Ovoids

G. Eric Moorhouse

Department of Mathematics
University of Wyoming

Third Mile High Conference on Nonassociative Mathematics
15 August 2013
$x(yz) \neq (xy)z$
Some ovoids in the $O^+_6(p)$ quadric (Klein quadric)

Consider a prime $p \equiv 1 \mod 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

1. $x_i \equiv 1 \mod 4$; and
2. $\sum_i x_i^2 = 6p$.

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \mod p$.

Example ($p = 5$, $|S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$;
20 vectors of shape $(-3, -3, -3, 1, 1, 1)$.

Example ($p = 13$, $|S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$;
30 vectors of shape $(-7, -5, 1, 1, 1, 1)$;
60 vectors of shape $(5, 5, -3, -3, -3, 1)$;
60 vectors of shape $(-7, -3, -3, -3, 1, 1)$.
Consider a prime $p \equiv 1 \text{ mod } 4$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

1. $x_i \equiv 1 \text{ mod } 4$; and
2. $\sum_i x_i^2 = 6p$.

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \text{ mod } p$.

Example ($p = 5, |S| = 5^2 + 1 = 26$)
- S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$;
- 20 vectors of shape $(-3, -3, -3, 1, 1, 1)$.

Example ($p = 13, |S| = 13^2 + 1 = 170$)
- S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$;
- 30 vectors of shape $(-7, -5, 1, 1, 1, 1)$;
- 60 vectors of shape $(5, 5, -3, -3, -3, 1)$;
- 60 vectors of shape $(-7, -3, -3, -3, 1, 1)$.
Some ovoids in the $O^+_6(p)$ quadric (Klein quadric)

Consider a prime $p \equiv 1 \pmod{4}$. Let S be the set of all $x = (x_1, \ldots, x_6) \in \mathbb{Z}^6$ such that

1. $x_i \equiv 1 \pmod{4}$; and
2. $\sum_i x_i^2 = 6p$.

Then $|S| = p^2 + 1$; and for all $x \neq y$ in S, $x \cdot y \not\equiv 0 \pmod{p}$.

Example ($p = 5, \ |S| = 5^2 + 1 = 26$)

S contains 6 vectors of shape $(5, 1, 1, 1, 1, 1)$;
20 vectors of shape $(-3, -3, -3, 1, 1, 1)$.

Example ($p = 13, \ |S| = 13^2 + 1 = 170$)

S contains 20 vectors of shape $(5, 5, 5, 1, 1, 1)$;
30 vectors of shape $(-7, -5, 1, 1, 1, 1)$;
60 vectors of shape $(5, 5, -3, -3, -3, 1)$;
60 vectors of shape $(-7, -3, -3, -3, 1, 1)$.

G. Eric Moorhouse

Octonionic Ovoids
Some ovoids in the \(O_6^+(p) \) quadric (Klein quadric)

Consider a prime \(p \equiv 1 \mod 4 \). Let \(S \) be the set of all \(x = (x_1, \ldots, x_6) \in \mathbb{Z}^6 \) such that

1. \(x_i \equiv 1 \mod 4 \); and

2. \(\sum_i x_i^2 = 6p \).

Then \(|S| = p^2 + 1 \); and for all \(x \neq y \) in \(S \), \(x \cdot y \not\equiv 0 \mod p \).

Example \((p = 5, |S| = 5^2 + 1 = 26)\)

- \(S \) contains 6 vectors of shape \((5, 1, 1, 1, 1, 1)\);
- 20 vectors of shape \((-3, -3, -3, 1, 1, 1)\).

Example \((p = 13, |S| = 13^2 + 1 = 170)\)

- \(S \) contains 20 vectors of shape \((5, 5, 5, 1, 1, 1)\);
- 30 vectors of shape \((-7, -5, 1, 1, 1, 1)\);
- 60 vectors of shape \((5, 5, -3, -3, -3, 1)\);
- 60 vectors of shape \((-7, -3, -3, -3, 1, 1)\).
Ovoids in $O_{2n}^+(q)$ quadrics

Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle < V$; such a point is singular if $Q(v) = 0$. The associated quadric is the set of all singular points. A subspace $U \leq V$ is totally singular if it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

The $O_4^+(q)$ quadric is a $(q + 1) \times (q + 1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_6^+(q)$ quadric exist for all q. The lattice construction of ovoids in $O_6^+(p)$ (above) can be generalized to all primes p.
Ovoids in $O_{2n}^+(q)$ quadrics

Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \rightarrow \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \leq V$; such a point is singular if $Q(v) = 0$. The associated quadric is the set of all singular points. A subspace $U \leq V$ is totally singular if it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

The $O_4^+(q)$ quadric is a $(q + 1) \times (q + 1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_6^+(q)$ quadric exist for all q. The lattice construction of ovoids in $O_6^+(p)$ (above) can be generalized to all primes p.
Ovoids in $O^{+}_{2n}(q)$ quadrics

Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* if it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An *ovoid* is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

The $O^{+}_{4}(q)$ quadric is a $(q + 1) \times (q + 1)$ grid; ovoids are transversals of the grid. Ovoids in the $O^{+}_{6}(q)$ quadric exist for all q. The lattice construction of ovoids in $O^{+}_{6}(p)$ (above) can be generalized to all primes p.
Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle < V$; such a point is *singular* if $Q(v) = 0$. The associated *quadric* is the set of all singular points. A subspace $U \leq V$ is *totally singular* if it lies entirely in the quadric, i.e. each of its points is singular. A *generator* is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An *ovoid* is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

The $O^+_4(q)$ quadric is a $(q + 1) \times (q + 1)$ grid; ovoids are transversals of the grid. Ovoids in the $O^+_6(q)$ quadric exist for all q. The lattice construction of ovoids in $O^+_6(p)$ (above) can be generalized to all primes p.
Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \to \mathbb{F}_q$.

(Projection) points are 1-dimensional subspaces $\langle v \rangle \subset V$; such a point is singular if $Q(v) = 0$. The associated quadric is the set of all singular points. A subspace $U \leq V$ is totally singular if it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

The $O^+_{2n}(q)$ quadric is a $\left(q + 1\right) \times \left(q + 1\right)$ grid; ovoids are transversals of the grid. Ovoids in the $O^+_{2n}(q)$ quadric exist for all q. The lattice construction of ovoids in $O^+_{2n}(p)$ (above) can be generalized to all primes p.

G. Eric Moorhouse

Octonionic Ovoids
Ovoids in $O_{2n}^+(q)$ quadrics

Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \rightarrow \mathbb{F}_q$.

(Projection) points are 1-dimensional subspaces $\langle v \rangle < V$; such a point is singular if $Q(v) = 0$. The associated quadric is the set of all singular points. A subspace $U \leq V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

The $O_4^+(q)$ quadric is a $(q+1) \times (q+1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_6^+(q)$ quadric exist for all q. The lattice construction of ovoids in $O_6^+(p)$ (above) can be generalized to all primes p.
Ovoids in $O_{2n}^+(q)$ quadrics

Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle < V$; such a point is singular if $Q(v) = 0$. The associated quadric is the set of all singular points. A subspace $U \leq V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

The $O_4^+(q)$ quadric is a $(q + 1) \times (q + 1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_6^+(q)$ quadric exist for all q. The lattice construction of ovoids in $O_6^+(p)$ (above) can be generalized to all primes p.
Ovoids in $O_{2n}^+(q)$ quadrics

Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle v \rangle \subset V$; such a point is singular if $Q(v) = 0$. The associated quadric is the set of all singular points. A subspace $U \subset V$ is totally singular if it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

The $O_4^+(q)$ quadric is a $(q + 1) \times (q + 1)$ grid; ovoids are transversals of the grid. Ovoids in the $O_6^+(q)$ quadric exist for all q. The lattice construction of ovoids in $O_6^+(p)$ (above) can be generalized to all primes p.
Ovoids in $O_{2n}^+(q)$ quadrics

Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \to \mathbb{F}_q$.

(Projective) points are 1-dimensional subspaces $\langle \nu \rangle < V$; such a point is singular if $Q(\nu) = 0$. The associated quadric is the set of all singular points. A subspace $U \leq V$ is totally singular it lies entirely in the quadric, i.e. each of its points is singular. A generator is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An ovoid is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Ovoids in $O_8^+(q)$ are known for some values of q, including all $q = p$ prime (Conway et al., 1988). No ovoids in $O_{2n}^+(q)$ are known in dimension $2n \geq 10$.
Let V be a $2n$-dimensional vector space over \mathbb{F}_q with nondegenerate quadratic form $Q : V \to \mathbb{F}_q$.

(Projective) **points** are 1-dimensional subspaces $\langle v \rangle < V$; such a point is **singular** if $Q(v) = 0$. The associated **quadric** is the set of all singular points. A subspace $U \leq V$ is **totally singular** if it lies entirely in the quadric, i.e. each of its points is singular. A **generator** is a maximal totally singular subspace. All generators have dimension n, if Q is chosen appropriately.

An **ovoid** is a set \mathcal{O} of points of the quadric, meeting each generator exactly once. Equivalently, \mathcal{O} is a set of $q^{n-1} + 1$ singular points, no two perpendicular.

Ovoids in $O^+_8(q)$ are known for **some** values of q, including all $q = p$ prime (Conway et al., 1988). No ovoids in $O^+_{2n}(q)$ are known in dimension $2n \geq 10$.
Denote by O the ring of integral octaves. The octonion algebra is $O = \mathbb{R} \otimes \mathbb{Z} O$ and O is isometric to a root lattice of type E_8 in \mathbb{O}.

The set of units O^\times is a Moufang loop of order 240, consisting of all elements of norm 1 in O.

For all $n \geq 1$, the number of elements $v \in O$ of norm $|v|^2 = n$ is

$$240\sigma_3(n) = 240 \sum_{1 \leq d | n} d^3.$$

Reduction mod p gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by $\overline{\cdot}$. Equipped with the quadratic form

$$Q : V \to \mathbb{F}_p, \quad Q(\overline{x}) = |\overline{x}|^2,$$

V is an orthogonal space of type $O_8^+(p)$.

G. Eric Moorhouse

Octonionic Ovoids
Denote by O the \textit{ring of integral octaves}. The octonion algebra is $O = \mathbb{R} \otimes_{\mathbb{Z}} O$ and O is isometric to a root lattice of type E_8 in O.

The set of units O^\times is a Moufang loop of order 240, consisting of all elements of norm 1 in O.

For all $n \geq 1$, the number of elements $v \in O$ of norm $|v|^2 = n$ is
\[
240\sigma_3(n) = 240 \sum_{1 \leq d | n} d^3.
\]

Reduction mod p gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by \sim. Equipped with the quadratic form
\[
Q : V \to \mathbb{F}_p, \quad Q(x) = |x|^2,
\]
V is an orthogonal space of type $O_8^+(p)$.
Denote by O the ring of integral octaves. The octonion algebra is $O = \mathbb{R} \otimes \mathbb{Z}$, O and O is isometric to a root lattice of type E_8 in O.

The set of units O^\times is a Moufang loop of order 240, consisting of all elements of norm 1 in O.

For all $n \geq 1$, the number of elements $v \in O$ of norm $|v|^2 = n$ is

$$240\sigma_3(n) = 240 \sum_{1 \leq d | n} d^3.$$

Reduction mod p gives maps $\mathbb{Z} \to \mathbb{F}_p$ and $O \to V := O/pO$ denoted by $\overline{\cdot}$. Equipped with the quadratic form

$$Q : V \to \mathbb{F}_p, \quad Q(\overline{x}) = \overline{|x|^2},$$

V is an orthogonal space of type $O_8^+(p)$.

G. Eric Moorhouse

Octonionic Ovoids
Denote by O the \textit{ring of integral octaves}. The octonion algebra is $O = \mathbb{R} \otimes \mathbb{Z}$ and O is isometric to a root lattice of type E_8 in O.

The set of units O^\times is a Moufang loop of order 240, consisting of all elements of norm 1 in O.

For all $n \geq 1$, the number of elements $v \in O$ of \textit{norm} $|v|^2 = n$ is

$$240\sigma_3(n) = 240 \sum_{1 \leq d|n} d^3.$$

Reduction mod p gives maps $\mathbb{Z} \rightarrow \mathbb{F}_p$ and $O \rightarrow V := O/pO$ denoted by $\overline{\cdot}$. Equipped with the quadratic form

$$Q : V \rightarrow \mathbb{F}_p, \quad Q(\overline{x}) = |\overline{x}|^2,$$

V is an orthogonal space of type $O_8^+(p)$.

\textbf{G. Eric Moorhouse}
\textbf{Octonionic Ovoids}
The 'binary' ovoids

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^\times$. Let S be the set of vectors $x \in \mathbb{Z}u + 2O \subset O$ such that $|x|^2 = p$. Then $|S| = 2(p^3+1)$ and S consists of $p^3 + 1$ pairs $\pm x$. Reducing these vectors mod pO gives

$$O = O_{2,p,u} = \{ \langle x \rangle : \pm x \in S \},$$

an ovoid in $O/pO \simeq O_8^+(p)$.

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of ‘ternary’ ovoids (replacing the prime 2 by 3 above).
The ‘binary’ ovoids

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in \mathbb{O}^\times$. Let S be the set of vectors $x \in \mathbb{Z}u + 2\mathbb{O} \subset \mathbb{O}$ such that $|x|^2 = p$. Then $|S| = 2(p^3 + 1)$ and S consists of $p^3 + 1$ pairs $\pm x$. Reducing these vectors mod $p\mathbb{O}$ gives

$$\mathcal{O} = \mathcal{O}_{2,p,u} = \{ \langle x \rangle : \pm x \in S \},$$

an ovoid in $\mathbb{O}/p\mathbb{O} \simeq \mathcal{O}_8^+(p)$.

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of ‘ternary’ ovoids (replacing the prime 2 by 3 above).
The ‘binary’ ovoids

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit $u \in O^\times$. Let S be the set of vectors $x \in \mathbb{Z}u + 2O \subset O$ such that $|x|^2 = p$. Then $|S| = 2(p^3 + 1)$ and S consists of $p^3 + 1$ pairs $\pm x$. Reducing these vectors mod pO gives

$$O = O_{2,p,u} = \{ \langle x \rangle : \pm x \in S \},$$

an ovoid in $O/pO \simeq O_8^+(p)$.

The proof uses the most basic facts about the E_8 root lattice. Conway et al. also gave a construction of ‘ternary’ ovoids (replacing the prime 2 by 3 above).
Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\left(\frac{-p|u|^2}{r}\right) = +1$.

Let S be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives

$$O = O_{r,p,u} = \{ \langle x \rangle : \pm x \in S \},$$

an ovoid in $O/pO \simeq O_8^+(p)$. (Some degenerate cases occur for $r > p$.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \geq 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $O_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the r-ary ovoids of octonionic type in $O_8^+(p)$.

G. Eric Moorhouse

Octonionic Ovoids
Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\left(\frac{-p|u|^2}{r} \right) = +1$. Let S be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives

$$O = O_{r,p,u} = \{ \langle x \rangle : \pm x \in S \}$$

an ovoid in $O/pO \cong O_8^+(p)$. (Some degenerate cases occur for $r > p$.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \geq 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $O_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the r-ary ovoids of octonionic type in $O_8^+(p)$.

G. Eric Moorhouse
Octonionic Ovoids
The r-ary ovoids in $O_8^+(p)$

Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\left(\frac{-p|u|^2}{r}\right) = +1$.

Let S be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \{\langle x \rangle : \pm x \in S\},$$

an ovoid in $O/pO \simeq O_8^+(p)$. (Some degenerate cases occur for $r > p$.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \geq 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the r-ary ovoids of octonionic type in $O_8^+(p)$.

G. Eric Moorhouse

Octonionic Ovoids
Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that $\left(\frac{-p|u|^2}{r}\right) = +1$.

Let S be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3 + 1)$ and S consists of $p^3 + 1$ pairs $\pm x$. Reducing these vectors mod pO gives

$$\mathcal{O} = \mathcal{O}_{r,p,u} = \{\langle x \rangle : \pm x \in S\},$$

an ovoid in $O/pO \simeq O_8^+(p)$. (Some degenerate cases occur for $r > p$.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \geq 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $\mathcal{O}_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the r-ary ovoids of octonionic type in $O_8^+(p)$.

G. Eric Moorhouse

Octonionic Ovoids
Theorem (M., 1993)

Let $r \neq p$ be odd primes. Fix $u \in O$ such that \(\left(\frac{-p|u|^2}{r} \right) = +1 \).

Let S be the set of vectors $x \in \mathbb{Z}u + rO \subset O$ such that $|x|^2 = k(r - k)p$ for some $k \in \{1, 2, \ldots, \frac{r-1}{2}\}$. Then $|S| = 2(p^3+1)$ and S consists of p^3+1 pairs $\pm x$. Reducing these vectors mod pO gives

\[O = O_{r,p,u} = \{ \langle x \rangle : \pm x \in S \}, \]

an ovoid in $O/pO \cong O_8^+(p)$. (Some degenerate cases occur for $r > p$.)

The proof uses facts about E_8 and the fact that $E_8 \oplus E_8$ has $480\sigma_7(n)$ elements of norm $n \geq 1$. (Or O and theorems on factorization in O). Ovoids isomorphic to $O_{r,p,u}$ (for primes $r \neq p$, including $r = 2$) are the r-ary ovoids of octonionic type in $O_8^+(p)$.
Open Questions

1. For each p, there are infinitely many choices of r, u to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in $O_8^+(p)$. How many? How do we know when we have found them all?

2. Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_8^+(p)$. Does $w(p) \to \infty$ as $p \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)

3. r, p don’t really have to be primes. Does anything comparable work in $O_8^+(q)$?

4. Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.

5. What is really going on in the construction of octonionic ovoids?
Open Questions

1. For each p, there are infinitely many choices of r, u to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in $O_8^+(p)$. How many? How do we know when we have found them all?

2. Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_8^+(p)$. Does $w(p) \to \infty$ as $p \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)

3. r, p don’t really have to be primes. Does anything comparable work in $O_8^+(q)$?

4. Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.

5. What is really going on in the construction of octonionic ovoids?
Open Questions

1. For each p, there are infinitely many choices of r, u to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in $O_8^+(p)$. How many? How do we know when we have found them all?

2. Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_8^+(p)$. Does $w(p) \to \infty$ as $p \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)

3. r, p don’t really have to be primes. Does anything comparable work in $O_8^+(q)$?

4. Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.

5. What is really going on in the construction of octonionic ovoids?
Open Questions

1. For each p, there are infinitely many choices of r, u to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in $O_8^+(p)$. How many? How do we know when we have found them all?

2. Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_8^+(p)$. Does $w(p) \to \infty$ as $p \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)

3. r, p don’t really have to be primes. Does anything comparable work in $O_8^+(q)$?

4. Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.

5. What is really going on in the construction of octonionic ovoids?
Open Questions

1. For each p, there are infinitely many choices of r, u to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in $O_8^+(p)$. How many? How do we know when we have found them all?

2. Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_8^+(p)$. Does $w(p) \to \infty$ as $p \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)

3. r, p don’t really have to be primes. Does anything comparable work in $O_8^+(q)$?

4. Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.

5. What is really going on in the construction of octonionic ovoids?
Open Questions

1. For each p, there are infinitely many choices of r, u to choose in constructing $O_{r,p,u}$ but only finitely many ovoids in $O_8^+(p)$. How many? How do we know when we have found them all?

2. Let $w(p)$ be the number of isomorphism classes of octonionic ovoids in $O_8^+(p)$. Does $w(p) \to \infty$ as $p \to \infty$? (By Conway et al. (1988), $w(p) \geq 1$.)

3. r, p don’t really have to be primes. Does anything comparable work in $O_8^+(q)$?

4. Most octonionic ovoids should be rigid, i.e. having trivial stabilizer in $PGO_8^+(p)$; but no rigid ovoids in $O_8^+(q)$ have been found.

5. What is really going on in the construction of octonionic ovoids?
Let O_1, O_2, \ldots, O_w be representatives for the isomorphism types of octonionic ovoids in $O_8^+(p)$, under $G = PGO_8^+(p)$. The number of ovoids isomorphic to O_i is $[G : G_{O_i}]$; note that

$$|G| = |PGO_8^+(p)| = \frac{2}{d}p^{12}(p^6 - 1)(p^4 - 1)^2(p^2 - 1)$$

where $d = \gcd(p - 1, 2)$.

The subgroup $W(E_8)/\{\pm I\} \cong PGO_8^+(2) \leq G$ has order

$$|PGO_8^+(2)| = 348,364,800.$$
Let O_1, O_2, \ldots, O_w be representatives for the isomorphism types of octonionic ovoids in $O_8^+(p)$, under $G = PGO_8^+(p)$. The number of ovoids isomorphic to O_i is $[G : G_{O_i}]$; note that

$$|G| = |PGO_8^+(p)| = \frac{2}{d} p^{12} (p^6 - 1)(p^4 - 1)^2 (p^2 - 1)$$

where $d = \gcd(p - 1, 2)$.

The subgroup $W(E_8)/\{\pm I\} \cong PGO_8^+(2) \leq G$ has order

$$|PGO_8^+(2)| = 348,364,800.$$
Conjectured number of octonionic ovoids

Conjectured Mass Formula

For $p \geq 5$,

$$w(p) \sum_{i=1}^{\infty} [G : G_{O_i}] = \frac{|G|(p^4 + 239)}{4|PGO_8^+(2)|};$$

i.e.

$$\frac{|PGO_8^+(2)|}{|G_{O_1}|} + \frac{|PGO_8^+(2)|}{|G_{O_2}|} + \cdots + \frac{|PGO_8^+(2)|}{|G_{O_w}|} = \frac{p^4 + 239}{4}.$$

The stabilizers G_{O_i} are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2, 3$ are genuine exceptions. (When $p = 3$ the octonionic ovoids lie in hyperplanes.)
Conjectured number of octonionic ovoids

Conjectured Mass Formula

For $p \geq 5$,

$$w(p) \sum_{i=1}^{[G : G_{O_i}]} = \frac{|G|(p^4 + 239)}{4|PGO_8^+(2)|};$$

i.e.

$$\frac{|PGO_8^+(2)|}{|G_{O_1}|} + \frac{|PGO_8^+(2)|}{|G_{O_2}|} + \cdots + \frac{|PGO_8^+(2)|}{|G_{O_w}|} = \frac{p^4 + 239}{4}.\]

The stabilizers G_{O_i} are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2, 3$ are genuine exceptions. (When $p = 3$ the octonionic ovoids lie in hyperplanes.)
Conjectured number of octonionic ovoids

Conjectured Mass Formula

For $p \geq 5$,

$$w(p) \sum_{i=1}^{w(p)} [G : G_{O_i}] = \frac{|G|(p^4 + 239)}{4|PGO_8^+(2)|};$$

i.e.

$$\frac{|PGO_8^+(2)|}{|G_{O_1}|} + \frac{|PGO_8^+(2)|}{|G_{O_2}|} + \cdots + \frac{|PGO_8^+(2)|}{|G_{O_w}|} = \frac{p^4 + 239}{4}.$$

The stabilizers G_{O_i} are not necessarily subgroups of $PGO_8^+(2)$. I am not claiming that the terms in this sum are always integers (but in every known case they are).

The cases $p = 2, 3$ are genuine exceptions. (When $p = 3$ the octonionic ovoids lie in hyperplanes.)
Corollary

Let $n(p)$ be the number of isomorphism types of ovoids in $O_8^+(p)$. If the Mass Formula holds, then for some absolute constant $C > 0$, $n(p) \geq Cp^4 \to \infty$ as $p \to \infty$.

Currently it is known that $n(p) \geq 1$ (Conway et al., 1988).
Verifying the Mass Formula for small p

<table>
<thead>
<tr>
<th>p</th>
<th>$w(p)$</th>
<th>Mass Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>$96 + 120 = 216 = \frac{5^4 + 239}{4}$</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>$120 + 540 = 660 = \frac{7^4 + 239}{4}$</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>$120 + 120 + 960 + 2520 = 3720 = \frac{11^4 + 239}{4}$</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>$120 + 1080 + 1680 + 4320 = 7200 = \frac{13^4 + 239}{4}$</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>$120 + 120 + 540 + 960 + 3360 + 4320 + 11520 = 20940 = \frac{17^4 + 239}{4}$</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>$120 + 120 + 1080 + 7560 + 8640 + 15120 = 32640 = \frac{19^4 + 239}{4}$</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>$120 + 120 + 120 + 540 + 960 + 2520 + 3360 + 7560 + 20160 + 34560 = 70020 = \frac{23^4 + 239}{4}$</td>
</tr>
</tbody>
</table>

Strictly speaking, these terms are lower bounds found by enumerating r-ary ovoids in $O_8^+(p)$ for small r and testing for isomorphism. To compute $\text{Aut}(\mathcal{O})$, use \texttt{nauty} to determine $\text{Aut}(\Delta(\mathcal{O}))$ where $\Delta(\mathcal{O})$ is the associated two-graph. In general $\text{Aut}(\mathcal{O}) \subseteq \text{Aut}(\Delta(\mathcal{O}))$, and we check that equality holds in all cases.
<table>
<thead>
<tr>
<th>p</th>
<th>$w(p)$</th>
<th>Mass Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>$96 + 120 = 216 = \frac{5^4+239}{4}$</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>$120 + 540 = 660 = \frac{7^4+239}{4}$</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>$120 + 120 + 960 + 2520 = 3720 = \frac{11^4+239}{4}$</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>$120 + 1080 + 1680 + 4320 = 7200 = \frac{13^4+239}{4}$</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>$120 + 120 + 540 + 960 + 3360 + 4320 + 11520 = 20940 = \frac{17^4+239}{4}$</td>
</tr>
<tr>
<td>19</td>
<td>6</td>
<td>$120 + 120 + 1080 + 7560 + 8640 + 15120 = 32640 = \frac{19^4+239}{4}$</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>$120 + 120 + 120 + 540 + 960 + 2520 + 3360 + 7560 + 20160 + 34560 = 70020 = \frac{23^4+239}{4}$</td>
</tr>
</tbody>
</table>

Strictly speaking, these terms are *lower bounds* found by enumerating r-ary ovoids in $O_8^+(p)$ for small r and testing for isomorphism. To compute $\text{Aut}(\mathcal{O})$, use *nauty* to determine $\text{Aut}(\Delta(\mathcal{O}))$ where $\Delta(\mathcal{O})$ is the associated two-graph. In general $\text{Aut}(\mathcal{O}) \subseteq \text{Aut}(\Delta(\mathcal{O}))$, and we check that equality holds in all cases.
Fix odd primes \(r \neq p \) and \(u \in O \) such that \(\left(\frac{-p|u|^2}{r} \right) = +1 \).

Denote the binary ovoid
\[
\mathcal{O}_{2,p,1} = \left\{ \langle x \rangle : \pm x \in \mathbb{Z} + 2O, \ |x|^2 = p \right\}.
\]

An alternative construction of the \(r \)-ary ovoid \(\mathcal{O}_{r,p,u} \) is via the canonical bijection
\[
f : \mathcal{O}_{r,p,u} \rightarrow \mathcal{O}_{2,p,1}
\]
constructed as follows. Given \(w \in \mathbb{Z}u + rO \) with
\[
|x|^2 = k(r - k)p, \ 1 \leq k \leq \frac{r-1}{2},
\]
we have
\[
w = xy
\]
for some \(x, y \in O \) such that \(|x|^2 = p \) and \(|y|^2 = k(r - k) \). If we also require \(x \in \mathbb{Z} + 2O \), then this factorization is unique up to a \(\pm 1 \) factor and our bijection is
\[
f : \langle w \rangle \mapsto \langle x \rangle.
\]
Canonical bijections between octonionic ovoids in $O_8^+(p)$

Fix odd primes $r \neq p$ and $u \in O$ such that $\left(\frac{-p|u|^2}{r}\right) = +1$.

Denote the binary ovoid

$$O_{2,p,1} = \{ \langle x \rangle : \pm x \in \mathbb{Z} + 2O, |x|^2 = p \}.$$

An alternative construction of the r-ary ovoid $O_{r,p,u}$ is via the canonical bijection

$$f: O_{r,p,u} \rightarrow O_{2,p,1}$$

constructed as follows. Given $w \in \mathbb{Z}u + rO$ with $|x|^2 = k(r - k)p$, $1 \leq k \leq \frac{r-1}{2}$, we have

$$w = xy$$

for some $x, y \in O$ such that $|x|^2 = p$ and $|y|^2 = k(r - k)$. If we also require $x \in \mathbb{Z} + 2O$, then this factorization is unique up to a ± 1 factor and our bijection is

$$f : \langle w \rangle \mapsto \langle x \rangle.$$
Thank You!

Questions?