Putnam Practice Problem Set #4 (Fun with integers!)
October 28th, 2011
(in no particular order)

1. Define a sequence of polynomials \(\{ f_n(x) \} \) recursively by \(f_0(x) = 1 \) and \(f_n'(x) = nf_{n-1}(x+1), \quad f_n(0) = 0 \) for \(n \geq 1 \). Find, with proof, the explicit factorization of \(f_{100}(1) \) into powers of distinct primes.

2. Let \(X \) be the number of integers \(n \) in the range \(1 \leq n \leq 2011 \) such that the first digit of \(2^n \) equals 1. Prove that \(2^{2011} \) has exactly \(X \) digits.

3. Prove that in any set of ten consecutive positive integers, one of them is relatively prime to the product of the other nine. (Two integers \(m \) and \(n \) are relatively prime if and only if \(\gcd(m,n) = 1 \).)

4. Find a positive integer \(B \) with the following property: there are exactly 2012 positive integers \(A < B \) such that \(\text{lcm}\{A,B\} + \text{gcd}\{A,B\} = A + B \).

5. Find the number of ways that 2011 can be written in the form \(\sum a_i 2^i \), where the \(a_i \) are allowed to take the values 0, 1, 2, and 3.

6. Let \(P(x) = x^d + a_{d-1}x^{d-1} + a_{d-2}x^{d-2} + \cdots + a_1x + a_0 \) be a monic polynomial with integer coefficients. Suppose that \(P \) has \(d \) positive roots \(r_1, \ldots, r_d \). Show that \(r_1^{2011} + \cdots + r_d^{2011} \geq d \).

7. Show that there is a multiple of \(2011^{2011} \) which contains all digits 0,1,\ldots,9 in its decimal expansion.

8. A perfect square has tail \(n \) if its last \(n \) digits in base 10 are the same and non-zero. What is the longest possible tail? What is the smallest square with this tail?