Putnam Practice Problem Set #5 (Fun with geometry!)
November 11th, 2011
(in no particular order)

(1) Let A_1, A_2, \ldots , A_n be points on a circle of radius 1. Prove that there exists a point P on the circle such that $PA_1 + PA_2 + \cdots + PA_n > n$. (Here, PA_j denotes the distance between the points P and A_j.)

(2) Suppose you inscribe regular polygon with 2011 sides inside a circle of radius 1, and then you draw every possible diagonal of the polygon. Evaluate the product of the lengths of all the sides and diagonals of this polygon.

(3) 2011 identical particles are moving along the real axis at constant velocities. You are given snapshots, each of which shows the positions of all the particles at a particular time; in each individual snapshot, the 2011 particles are in 2011 different positions, although you can’t tell which one is which since they’re identical. Show that if you have a snapshot at some initial time and snapshots for 1 second later, 2 seconds later, and so on up to 2011 seconds later, then you can determine the velocities of each of the particles.

(4) What is the maximum possible area of a quadrilateral with three sides of length 1?

(5) Let C_0 be the circle centered at $(1, 1)$ with radius 1, and let C_1 be the circle centered at $(-1, 1)$ with radius 1. For each $k \geq 2$, let C_k be the circle that lies in the region between C_0, C_{k-1}, and the x-axis and is tangent to all three. For example, C_2 is the circle centered at $(0, \frac{1}{4})$ with radius $\frac{1}{4}$. What is the radius of C_{2011}?

(6) Let T be a triangle, and let P be a parallelogram that lies inside T. (It may intersect T on the boundary.) Show that the area of P is at most one-half the area of T.

(7) Let C_1 and C_2 be two circles in the plane such that the center of C_1 lies on C_2. Let W and X be the two points of intersection of the circles C_1 and C_2. Let L be a line through W that is not tangent to either circle, such that no point on the line is inside both circles. Let Y and Z be the points of intersection of L with C_1 and C_2, respectively. Show that $\triangle XYZ$ is isosceles.

(8) Let C_1, C_2, and C_3 be three circles of radius 1 in the plane, no two of which are tangent to each other, that all pass through a point P. Each pair of circles intersects in a second point besides P; call these three other points of intersection Q, R, and S. Now draw three new circles D_1, D_2, and D_3 of radius one, centered at the three points Q, R, and S. Show that D_1, D_2, and D_3 all intersect in a common point.