A new approach to cooperative pathfinding

(Short Paper)

Renee Jansen
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2E8
maaike@cs.ualberta.ca

ABSTRACT

In the multi-agent pathfinding problem, groups of agentdrnee
plan paths between their respective start and goal locaiioa
given environment, usually a two-dimensional map. Exgstap-
proaches to this problem include using static or dynamierint-
tion to help coordination. However, the resulting behawisunot
always desirable, in that too much information is hand-doid¢o
the problem, agents take paths which look unintelligenbemause
the agents collide and must re-plan frequently. We preselig-a
tributed approach in which agents share information abueit-
rection in which they traveled when passing through eacétios.
This information is then used to encourage agents passioggh
the same location to travel in the same direction as preagests.
In addition to this new approach, we present performanceicset
for multi-agent path planning as well as experimental tssuol the
new approach. These results indicate that the number aicols
between agents is reduced and that the visual fidelity isdugat.

Categories and Subject Descriptors
1.2.11 Distributed Atrtificial Intelligence]: Multiagent systems

General Terms
Algorithms

Keywords

Cooperative path planning, Emergent behaviour

1. INTRODUCTION AND BACKGROUND

Consider a group of agents in a video game which try to tra-
verse a game map. Many of them may be involved in repetitive
tasks, such as patrolling between locations, or ferrying gack
and forth from a gold mine. Other agents may be traversingidye
as well. Ideally these agents are able to coordinate therements
to avoid collisions. This is an example of cooperative patlifig.

In the single-agent pathfinding problem, an agent is givaara s
and goal location and must find a path between them. The world
is often assumed to be static, so that plans are guaranteeessu
Most traditional algorithms, like A* and IDA*, assume thige of
environment. In some cases it may be possible to use thasmpss

Cite as: A new approach to cooperative pathfinding (Short Paper)e&en
Jansen and Nathan SturtevaRroc. of 7th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2068}igham, Parkes,
Muller and Parsons (eds.), May, 12-16., 2008, Estoril, Rt pp. XXX-
XXX.

Copyright (© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

Nathan Sturtevant
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2E8
nathanst@cs.ualberta.ca

tions in a world with multiple agents. If the world is suffioity
large, the costs of making this assumption will not be large.

When the world is sufficiently constrained, cooperativénfiat-
ing is needed. In this case, multiple agents need to find fmths
tween their respective start and goal locations. This prabis
significantly harder, because the agents need to plan adooihd
static and dynamic obstacles. It is not feasible to compntepa
timal solution to the cooperative pathfinding problem. Erhare
u agents and each one can makmoves, the joint action space at
each step is already (b*).

There are three common approaches to this problem. Theseasie
approach is to consider other agents as static obstacle® arsg
individual solutions to the single-agent problem as a sofuto the
multi-agent problem. A second approach is to do cooperative-
ning over a limited window of search, and use a non-cooperati
solution beyond that window. A third approach is to use flogki
rules to modify the behaviour of agents to be more cooperatve
will describe these approaches more in the next section.

Cooperative and flocking approaches are promising, altmoug
they can be computationally expensive. They require thantsg
are able to share information about their location or moverde
rection. Considering other agents as static obstaclehenother
hand, does not seem promising, as agents will almost chrtain
move by the time a collision might occur. However, this ajppgto
is desirable in that each agent can plan and act individually

One idea which motivates this paper is agent-centeredisggrc
This is a paradigm where agents do not have access to glebal in
formation about the world, but just some local window or tedi
around each agent. Constraining knowledge of the envirahtoe
a local window leads to the main idea of this research, ajhou
the ideas are not limited to this paradigm. Assume that the isia
known, but the locations of all other agents are not knowranif
agent’s view of the world is overly restricted, most coopigeaap-
proaches break down. For example, cooperative plannifgetil
work well if agents can only cooperate with adjacent agents.

The key insight for this paper is that agents should attempt t
share dynamic information about the environment, as thi stp-
proach does not work well. Knowing that a tile is blocked i$ no
interesting, because in a dynamic world this changes tockbyui
We propose a new data structuralieection map which stores the
direction an agent last moved at each location. This not capy
tures some of the dynamics of the world but can also be useadgdur
planning and results in emergent cooperative behaviotmouttex-
plicit communication of plans between agents.

1.1 Related Work

A number of techniques have been used for cooperative balravi
The first set of approaches is based on the idea that cooperati
planning is not just planning in two dimensions, but plagnin

UpdateDirectionVector(«, currentLocation, moveDirection)
1 vl « GetVector(currentLocation)
2 02 «— GetDirectionVector(moveDirection)

U 3 directioncyrrent Location
° 1] 1 a-vl4+(1—a)- v2
£ E A
1 /y Figure 2: Pseudocode for updating the direction of a location

ComputeEdgeCost{veight, eqp)

)) 1 wm < GetDirectionVector(eqp)
Figure 1: An example reservation table. 2wy « GetVector(a)
3 v, «— GetVector(b)
])] 4 weightq — 1=(vm:va)
three dimensions, through both space and time. After aggats 5 weighty — 1f(v;n~vb)
6

they mark a space-time data structure with their futuretlona.
We illustrate this in Figure 1. Agent 1 is planning to movergjo
the z-axis to the location where Agent 2 currently stands. Depend
ing on the order of planning, Agent 2 either has already dro
move, or moves to get out of the way of Agent 1.

Dresner and Stone use this idea for a traffic management appli
cation [3]. In their domain, they are guiding traffic througB-way
intersection. They show that this approach allows vehicesove
through the intersection faster than with stop signs ofitrights,
while collisions are avoided. This approach works well heee
cause traffic is already organized into lanes, and theré¢fane is
only a small area where cooperative planning is needed.

The same ideas have been adapted in the Windowed Hierdrchica
Cooperative A* (WHCA¥) [6] and Cooperative Partial-Refinent
A* (CPRA¥) [7] algorithms. In these approaches agents are no
restricted to traffic lanes, but freely travel around theiemment.
The drawback to this approach is that agents’ cooperatiains
dowed, which can lead to a horizon effect, where agents pisin |
enough to push congestion past the windowed horizon. Ircéss,
agents behaviour can appear to be quite bizarre.

A second common approach to cooperative behaviour is flgckin
[5]- In a flocking simulation, agents have three objectivésst, to
avoid collisions with nearby members of the flock, second atam
their velocity with that of nearby members of the flocks, amictt,
to stay close to their flock. The behaviour of this approadhenv
properly tuned, can be quite impressive. Similarly to resgon
methods, a reasonably sized window of information abouéroth
agents must be maintained for this approach to work.

Cooperative behaviour can also be obtained by using apiréts
approaches. An example is Ant System, which was developed by
Dorigo et al[2]. This approach uses virtual feromones to do opti-
mization, for example in the traveling salesman problermil&r
to our approach, agents leave a piece of information behimehw
they pass through a state in order to do path planning. Haweve
the goal of the approaches is different. In Ant System, thal go
is to find an optimal path between a single start and goalilmtat
whereas we consider the case where the agents have theitanvn s
and goal positions.

returncost(eqp) + weight - (%weighta + %weightb)

Figure 3: Pseudocode for computing weighted edge costs

First, consider how this can be done from a global perspectiv
Associated with each location in the world isdaection vector
(DV). The first time a location is visited by an agent, the dii@n
from which the agent moved into the location is stored as tiie D
for that location. Then, each successive time an agentsenter
exits the location, the DV is updated to be a weighted aveofge
the previous DV and the DV formed by the angle from which the
agent moving through the location. After each update, theiDV
normalized. This is demonstrated in Figure 2. A learning cats
used to determine how fast the DV changes as agents traherse t
environment.

These stored directions are then used to guide the ageritg) dur
planning. The cost of traversing an edgdetween locations
andb is the cost of the edge plus some function of the DVs for the
locations that are being entered and left. This function tede
many different forms. Intuitively there should be some pignid
we are leaving location in a direction which is different from the
DV, and similarly when entering locatioh A simple approach,
demonstrated in Figure 3, is to compute the vector an agdht wi
be traveling between andb, and then to take the dot-products of
that vector with the DVs for both andb. We normalize each dot-
product to be between 0 and 1, where a value of 0 means the agent
is following the direction that is stored in the node, and antethe
agent is moving in the opposite direction. We take the awenig
the two normalized dot-products and multiply it by a weiglhtieh
determines the actual cost of going in the ‘wrong’ directidinis
weight is varied in our experimental results.

An example is given in Figure 4. Imagine that one agent, indi-
cated byA1, has previously moved from location C1 to location
C5. The arrows in Figure 4(a) indicate the directions forheac
location that were generated by this. Now, consider agént
who wants to move from its start position D3 to its goal looati
B3. It plans the route D3 - C3 - B3, so its first move is ‘up’.
This move changes the DVs stored in both D3 and in C3. Since

2. DIRECTION MAPS no DV was stored in D3 yet, the DV is set to be the same as

The novel idea of this paper is direction map(DM) which the direction in which the agent left, which is ‘up’, repreted
stores information about the direction that agents haweled in by the vector{0, 1]7. For C3, the DV becomes a weighted aver-
each portion of a map. Agents then use this information gurin age of the previous DV[1,0]”, and the movement vectdt), 1]7.
planning; moves which run counter to tbgection mapincur ad- For this example, we assume that the two vectors are weighted
ditional penalties so that agents are encouraged to move amar evenly,i.e.c = 0.5, which gives ug.5 - [1,0]” +0.5-[0,1]T =
formly across the environment. If the agents are able to fme- [0.5,0]7 +[0,0.5]7 = [0.5,0.5]7. The last step before the vector
thing akin to lanes (which were manually constructed foffitra is stored is to normalize the DV, which giveg2/2, v/2/2]*. This
management in [3]), the cohesiveness of their behaviourimil is the DV that is shown in location C3 in Figure 4(b).

crease. The last step taken by agent A2 is from C3 to B3. The ‘up’-

A A A
B G2 B G2 B @T
1)
Cla %%%% Clat %@%%% C31%/%C?f
D S§ b szT b szT
E E E
(a) Step1 (b) Step 2 (c) Step 3

Figure 4: Example

direction the agent moves in again corresponds to the vEtor .
The DV currently stored in C3i8/2/2, v/2/2]*, and the two vec-
tors are combined as above to givé - [v/2/2,v/2/2]T + 0.5 -
0,17 = [v2/4,V2/4" +[0,1/2]" = [v2/4,(vV2 + 2)/4]".
The DV is again normalized and stored.

As currently described, agents share a global directiondh)
which is counter to the notion of agent-centered search. edery
it is simple to update this idea to be agent-centric. To ds, #sch
agent maintains its own DM, according to what has been expe-
rienced when moving around the world. At each step, an agent
updates its DM within a local radius. The observed DM is used
for future planning, although it may become out-of-daterfime

passes. We assume that agents can store both the world map and (a)

copy of their own DM.

3. PERFORMANCE METRICS

One difficulty with measuring the performance of a coopeeati
pathfinding approach is designing suitable metrics for disk.tAl-
though approaches which provide high visual fidelity arégored,
it is difficult to quantify this from a human perspective. Winsid-
ered several different metrics, including the number ofisions
during simulation, the number of turns made by each agest, th
distance traveled, and the time taken to complete a taskhe3kt
metrics, the one which could best distinguish differentrapphes
was the number of collisions during simulation. The distatrav-
eled and the time taken was similar for all approaches we.used

A new metric which arises from our approach is the coherence
of the DM during simulation. For each location and directiec-
tor in the DM, we can measure the dot product of the DV with the
DV at location at which an agent would arrive if it traveledtire
direction of the DV. In simple terms, this measures whethia-a
cent vectors in the location map point in the same directidrich
is an indication of how coordinated the movement of the agint
This, too, proved to be a useful metric into the performarfab®
cooperative pathfinding.

4. EXPERIMENTAL RESULTS

In this section we evaluate the performance of DMs. All ex-
periments were performed in the Hierarchical Open GraphGHO
testbed, which is publicly available [1]. We used a numbeditf
ferent maps for our experiments, two of which are shown inréigu
5. The map shown in Figure 5(a) is a 32 x 32 grid, and the map in
figure 5(b) is a 64 x 64 grid. The experiments consisted of abaim
of agents which patrol back and forth between two locatiche{

@)

(b)

Figure 5: Examples of maps. Dark areas indicate possible stia
and goal locations for the agents.

= = =
I s S A [Nl
AN ENENSNN
HEEEASENNNN LN
12 2 IO AN e e Y AN NN NSNS NS
NN AAAFTINNN LI TAVNL AL SN
LA RN INMNNSESNUSENN
NESNMMN NN NN NENNE
(NNNNIN NN N AN LN
NTRIAL NN LEAVAT SN
N1 TN L = [N/
Weighted environment (b) Non-weighted environ-
ment

Figure 6: The arrows generated in the weighted and non-
weighted environments

10 patrol loops between their start and goal locations, aedvt
parameter from Figure 2 is set to 0.8. The weight parameden fr
Figure 3 was either set to 5 or 10. Agents are able to see other
agents within a small radius (4-5 steps), and A* is used fopal
periments. We compare the agents using DMs to agents wtsth ju
use static information about other agents during planning.

Figure 6 shows two DMs. Figure 6(a) is from agents that use
weights from the DM to modify their search and demonstraias t
the agents form clear lanes of travel. Figure 6(b) is fromnége
that update the DM, but do not use weights from the DM to modify
their search. This DM shows more chaotic movement. Cooperat
algorithms like WHCA* will not improve this behaviour, aseh
goal is to avoid bumping into other agents, not to move in aallg
cohesive manner.

Our first experiment measures DM coherence. We measured the
average coherence of the direction map during 50 differesrar-
ios for agents that used the DM during search and those tthaodli
Agents could see other agents within radius 5, and the cas\of
eling against the direction map was given weight 5. For ageat
using the direction map for planning, we still updated threction
map to measure how they traveled across the environment.

In both cases, the DM coherence is high at the beginning, be-
cause a DM is fully coherent when it is empty. After an inistd-
bilization phase, the agents using the DM formed graduathyem
coherent paths. Agents which did not use the DM had much less
coherence, although the coherence of their travel incseasdhe

sen at random from the dark areas) on the map, with the numberscenario draws to a close. This is because some agents fieish t

of patrols predefined. Each agent is assigned one patrdldada
the left-hand side, and one on the right-hand side of the map.
We present a subset of our experimental results, althougérex
iments with different parameters did not differ signifidgrfrom
what we present here. For all experiments, agents must edenpl

travel earlier than others, so the remaining agents aretatitem
more coherent paths.

Next we compare the number of failed moves between agents.
Figure 8 shows the results, averaged over 50 trials. Thehweig
on the cost of traveling against the DM was set to 10. This éigur

——Weighted
——Non-weighted

Angle coordination

600 800 1000

Simulation time

400

0 200

1200

Figure 7: Angle coordination

2.9r
2.7r b
g 2,5\,_,\’_’\—
204l .
g :
o 211 —=<— Weighted
8 1.9t
- —— Non-weighted
g 1.7t
8 15
o
£ 1.3r
o
o 11t
T
L 09
0.7¢

0'52 3 4 5 6 7 8 9
Lookahead radius

10

Figure 8: Failed moves per loop, per agent, for varying looka
head radius.

shows that the number of failed moves per agent per patrgl loo
is significantly larger for agents which do not use the DM tfam
those that do. Agents using the DM naturally avoid agentsingov
in the opposite direction.

Note that each failed move requires a re-planning step. fepe
ing on the algorithm used, this re-planning can be expen&ug,
it is also more expensive to plan using the weights from thecdi
tion map. Our experimental results showed that these céfsest o
each other, so both approaches expanded roughly the sanfeenum
of nodes. We are investigating ways to reduce the nodes dggan
when planning with the DM.

Finally, we compare the performance of agents that us a globa
DM to agent-centric DMs, maintained by each agent. We again
report the average results over 50 scenarios. While agentd ¢
see other agents within a radius of 5, they only updated tbes
direction map with a radius of two.

Figure 4 compares the number of failed moves for the agent-
centric DM case to the case with a global DM as well as the case
with no DM. The figure shows that the local view increases the
number of failed moves, which is to be expected because trasig
information about the world is incomplete. Although the rgn
of failed moves with an agent-centric DM is higher than in¢hse
with a global DM, it is better than using no DM.

5. CONCLUSIONS AND FUTURE WORK

This paper presents the idea of direction maps, which egult

~

(o))

——Unweighted
—e—Local weight map
——Global weight map, weighted

a

A

w

N

Failed moves per loop per agent

o

20
Weight

10 40

Figure 9: Failed moves per loop, per agent, for no weight maps
global weight maps, and local weight maps.

emergent cooperative behaviour without agents havingpboitky
communicate their plans. As this is a preliminary studyreresre
many directions in which this research can be taken.

Direction maps work particularly well in an agent-centritvie
ronment, when agents have a very limited horizon of communi-
cation, as other approaches degenerate in this model. \lYlsle
clear that algorithms like WHCA* will degrade when the coop-
eration window is too small, we need to run larger tests tavsho
this effect in practice. Another important question is wiyaes of
environments are best suited to each of the existing appesdor
cooperative behaviour. We are also interested in undelistgumow
direction maps might aid performancedrpriori unknown worlds.

Finally, there are a number of enhancements and experiments
which could be added to direction maps. For instance, the DM
approach will fail when an agent is blocking a doorway and an-
other agent needs to get through this doorway to get to itk goa
This could possibly be solved by using direction maps aloit w
WHCA?*, since this algorithm allows for an agent to move out of
another agent’'s way. There are a variety of different updales
that could be used as agents move through the environmehigin
ing a time decay on weights and update rules applied overaalbro
radius. This work is just a first step in exploring the possibses
of direction maps for inducing cooperative behaviour.

6. REFERENCES

[1] http://lwww.cs.ualberta.ca/ nathanst/hog.html.

[2] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System:

Optimization by a colony of cooperating agenEE

Transactions on Systems, Man, and Cybernetics Part B:

Cybernetics26(1):29—-41, 1996.

K. Dresner and P. Stone. Multiagent traffic management: A

reservation-based intersection control mechanisrithia

Third International Joint Conference on Autonomous Agents

and Multiagent Systempages 530-537, July 2004.

[4] S. Koenig. Agent-centered seardttificial Intelligence
Magazine 22(4):109-131, 2001.

[5] C. W. Reynolds. Flocks, herds, and schools: A distridute

behavioral modelComputer Graphics21(4):25-34, 1987.

D. Silver. Cooperative pathfinding. lIDE, pages 117-122,

2005.

N. Sturtevant and M. Buro. Improving collaborative

pathfinding using map abstraction. AlDE, pages 80-85,

2006.

(3]

(6]
[7]

