Learning

- Any aspect of an agent can (potentially) be improved through learning
- Depends on:
 - What component to be improved
 - Prior knowledge of the agent
 - Representation used for data & the component
 - What feedback is available for learning

Today

- Learning
- Decision Trees

Types of learning

- Unsupervised learning
 - Learning about data by looking at its features
 - No specific feedback from users
 - Usually entails clustering data
Types of learning

- Reinforcement learning
 - Agents with sensors experience the world
 - As they act they receive positive and negative rewards
 - The agent then learns value of (sensor) states

- Supervised learning
 - Agent is given example input and correct output
 - Goal is to build general model that will produce correct output on novel input

- Semi-supervised learning
 - Some labeled examples in data set
 - Some mislabeled examples
 - Learn generalized model

Supervised learning

- Given a *training set* of N example inputs and outputs
 - $(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$
 - Where each y_i comes from an unknown function
 - $y_i = f(x_i)$
 - Discover a function h such that $h(x) \approx f(x)$
 - Think of h as a hypothesis, and we are searching for the “best” hypothesis
Supervised learning

- All available data is usually broken into:
 - Training set: exclusively used for study & training
 - Test set: exclusively used for testing
- Ensures that the learning generalizes from training data to test data
- Want to avoid overfitting data

Ockham’s razor

- Given multiple possible hypotheses that explain the data, choose the simplest one
 - 1st degree polynomial is probably better than a 3rd degree polynomial
- Decision isn’t always clear
Decision Trees

- A decision tree is a simple classifier
- Training input:
 - Data points with a set of attributes
- Classifier output:
 - Can be boolean or have multiple outputs
 - Each leaf stores an “answer”

Example

- Should we wait for a table at a restaurant?
- Possible attributes:
 - Alternate restaurant nearby?
 - Is there a bar to wait in?
 - Is it Friday or Saturday?
 - How hungry are we?
 - How busy is the restaurant?
 - How many people in the restaurant?

Representation

- The states which reach each outcome can be represented by written as the disjunction (or) of each possible path of decisions
- What about a decision tree for N boolean inputs:
 - Are more than N/2 inputs true?
General Approach

- Greedy approaches work well
 - Choose the category that divides into the best sub-problems

Recursive splitting

- Choosing and assigning to a node in the decision tree to an attribute produces a smaller decision tree problem
 - When all examples have the same outcome; done.
 - If examples are split, choose another attribute
 - If there are no examples, set default value
 - If there are no attributes left, there are conflicting examples (use the best classification)

Example

<table>
<thead>
<tr>
<th>Example</th>
<th>Attributes</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Yes, No, No, Yes, Some</td>
<td>$$$$</td>
</tr>
<tr>
<td>X_2</td>
<td>Yes, No, No, Yes, Fall</td>
<td>$</td>
</tr>
<tr>
<td>X_3</td>
<td>No, Yes, No, No, Some</td>
<td>$</td>
</tr>
<tr>
<td>X_4</td>
<td>Yes, No, Yes, Yes, Fall</td>
<td>$</td>
</tr>
<tr>
<td>X_5</td>
<td>Yes, No, Yes, No, Fall</td>
<td>$$$</td>
</tr>
<tr>
<td>X_6</td>
<td>No, Yes, No, Yes, Some</td>
<td>$</td>
</tr>
<tr>
<td>X_7</td>
<td>No, Yes, No, No, None</td>
<td>$</td>
</tr>
<tr>
<td>X_8</td>
<td>No, No, No, Yes, Some</td>
<td>$</td>
</tr>
<tr>
<td>X_9</td>
<td>No, Yes, Yes, No, Fall</td>
<td>$</td>
</tr>
<tr>
<td>X_{10}</td>
<td>Yes, Yes, Yes, Yes, Fall</td>
<td>$$$</td>
</tr>
<tr>
<td>X_{11}</td>
<td>No, No, No, No, None</td>
<td>$</td>
</tr>
<tr>
<td>X_{12}</td>
<td>Yes, Yes, Yes, Yes, Fall</td>
<td>$</td>
</tr>
</tbody>
</table>

Figure 18.3 Examples for the restaurant domain.

Measuring the best splitting

- The choice for splitting is defined in terms of entropy
 - Entropy measures uncertainty
 - A fair coin has 1-bit of entropy
 - A 4-sided die has 2 bits of entropy
 - Entropy of a random variable V with values v_k and probabilities $P(v_k)$ is:
 $$- \sum_k P(v_k) \log_2 P(v_k)$$
Entropy examples

\[-\sum_k P(v_k) \log_2 P(v_k)\]

- Entropy of a fair coin:
 - \(-(0.5 \log_2(0.5) + 0.5 \log_2(0.5)) = 1\)
- Entropy of a coin which is heads 99% of the time:
 - \(-(0.99 \log_2(0.99) + 0.01 \log_2(0.01)) = 0.08\)

Entropy & Decision tree learning

- Let \(B(q)\) be the entropy of a boolean variable with probability \(q\) of being true
- Assume the training set has \(p\) positive and \(n\) negative examples
 - \(H(\text{Goal}) = B(p / p+n)\)
 - This is the entropy of the problem being decided

Entropy & Decision tree learning

- Measure the change in entropy after splitting on a variable \(A\)
 \[\text{Remainder}(A) = \sum_{k=1}^{d} \frac{p_k + n_k}{p + n} B\left(\frac{p_k}{p_k + n_k}\right)\]
- The gain of splitting on \(A\) is:
 \[\text{Gain}(a) = B\left(\frac{p}{p + n}\right) - \text{Remainder}(A)\]
- Gain(Patrons) = 0.541 bits
- Gain(Type) = 0 bits

Class Example

- Everyone provide an example for what we should do tonight.
- Choices:
 - Go out with friends
 - Stay in with friends
 - Stay in and work/sleep
- Features
 - HW: high, medium, low
 - Tired: high, medium, low
 - (other features?)