Today

- Supervised Learning
 - Linear regression (18.6)
 - Neural Networks (18.7)
- Making complex decision (17.1, 17.2, 17.3)
- Background for Reinforcement Learning

Univariate linear regression

- Regression on a single variable
 - Input x, and output y; learn weights w
 - $y = w_0 + w_1x$
- Hypothesis becomes
 - $h_w(x) = w_0 + w_1x$
- Finding best weights is linear regression

Example

![Example graph showing house price vs. size in square feet]
Learning

• Find the weights which minimize the loss
 • How do we define loss?
 • L_2 is the squared distance (to the line)
 • Also called the L_2 norm
 \[Loss(h_w) = \sum_{j=1}^{N} L_2(y_j, h_w(x_j)) = \sum_{j=1}^{N} (y_j - h_w(x_j))^2 = \sum_{j=1}^{N} (y_j - (w_0 + w_1 x_j))^2 \]

Graph of loss function

Learning

• In univariate case, can solve exactly
 • In general, use gradient descent to improve values
• Simple algorithm:
 • Initialize w randomly
 • Loop until converged:
 • For each w_i in w
 * $w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} Loss(w)$

Gradient

\[Loss(h_w) = \sum_{j=1}^{N} (y_j - (w_0 + w_1 x_j))^2 \]

• What is the gradient/slope with respect to w_0?
 • Just use a single training example, not all N
 • $\frac{\partial}{\partial w} (y - h(x))^2 = 2(y - h(x)) \cdot \frac{\partial}{\partial w} (y - h(x))$
 • $\frac{\partial}{\partial w_0} (y - h(x)) = \frac{\partial}{\partial w_0} (y - (w_0 + w_1 x)) = -1$
 * $\frac{\partial}{\partial w} (y - h(x))^2 = -2 \cdot (y - h(x))$
 • $\frac{\partial}{\partial w_1} (y - h(x)) = \frac{\partial}{\partial w_1} (y - (w_0 + w_1 x)) = -x$
 * $\frac{\partial}{\partial w} (y - h(x))^2 = -2 \cdot (y - h(x)) \cdot x$
Final algorithm

- Weight update was:
 - \(w_i \leftarrow w_i - \alpha \frac{\partial}{\partial w_i} \text{Loss}(w) \)
 - \(w_0 \leftarrow w_0 + \alpha (y - h_w(x)) \)
 - \(w_1 \leftarrow w_1 + \alpha (y - h_w(x)) \cdot x \)
- For more variables:
 - \(w_i \leftarrow w_i + \alpha x_i (y - h(x)) \)
- Incremental update version
- Batch update version in book

Function vs classifier

- So far we’ve learned a function approximator
 - Can also be used to learn a classifier
 - For instance, classify as true if \(h(x) \geq 0 \)
 - Or \(h_w(x) = 1 \) if \(w \cdot x \geq 0 \)
 - Or \(h_w(x) = \text{Threshold}(w \cdot x) \)
- Can visualize performance with a training curve
Threshold function

- What if we use a different threshold function
- Get a different type of regression
- $Logistic(z) = \frac{1}{1 + e^{-z}}$
- $h_{w}(x) = Logistic(w \cdot x)$
- Derivative of logistic:
 - $g'(w \cdot x) = g(w \cdot x) (1 - g(w \cdot x))$
 - $w_i \leftarrow w_i + \alpha (y - h(x)) \cdot (h(x)(1-h(x))x_i$

Notes

- Linear regression is limited to linearly separable classes
 - BUT, can use more complex inputs to make the classes linearly separable [kernel]
- Regression can easily learn majority function
 - Recall, this was hard for decision trees

Extending to multiple layers

- What we have so far is called a perceptron
 - Single-layer neural network
- Can extend to multiple layers
 - Usually assume that all outputs from previous layer fully connected to next layer

\[
\alpha = \frac{1000}{1000 + t}
\]
Neural Network training

- Use same rule as before to train the output layer
 - Let Err_k be the error in the kth output
 - Or assume a single output unit and ignore k
 - Let $\Delta_k = \text{Err}_k \cdot g'(in_k)$
 - Update rule becomes:
 * $w_{j,k} \leftarrow w_{j,k} + \alpha \cdot a_j \cdot \Delta_k$

Neural Network training

- Input rule more tricky
 - Where do the errors come from?
 - Let $\Delta_i = g'(in_i) \sum_k w_{i,k} \Delta_k$
 * $w_{i,j} \leftarrow w_{i,j} + \alpha \cdot a_i \cdot \Delta_j$
 - Full derivation in book