Problem Solving Agents

- Requires a goal
- Requires actions
 - What actions?
- Requires state representation
 - How should state be represented?

Problem Solving Agents: Assumptions

- Assume world is:
 - Observable
 - Discrete
 - Known
 - Deterministic
Problem Solving Agents: Approach

- General approach is called “search”
- Input: environment, start state, goal state
 - Env.: states, actions, transitions, costs, goal test
- Output: sequence of actions

- Actions are executed after planning
 - Percepts are ignored when executing plan

Sample Domains

- Vacuum world
- Sliding-tile puzzle
- 8-queen puzzle
- Path planning

Vacuum world

- States:
 - Initial state:
 - Actions:
 - Transitions:
 - Goal test:
 - Action Cost:

Vacuum world

- States: All combinations of agent & dirt locations [8]
- Initial state: Any state
- Actions: Left / Right / Suck
- Transitions: Left / Right put you in Left / Right cell
 - Suck removes dirt
- Goal test: No dirt
- Action Cost: 1 for all actions
Sliding Tile Puzzle

- States:
- Initial state:
- Actions:
- Transitions:
- Goal test:
- Action Cost:

Path planning variations

- Traveling sales problem
- Rectangle packing
- Robot navigation
- Multi-agent planning
Search Terminology

• Search tree: implicit/explicit set of searched states
• Node: single state in tree
 • Multiple nodes may represent the same state
• Expansion: generating the neighbors of a state
• Children: new neighbors of a state
• Parent: state from which neighbors were generated

General Best-First Search

• Open list: set of states considered next for expansion
 • Also called “search frontier”
• States are ordered by some priority of “best”
• Closed list: set of states which have been expanded
 • Not all algorithms maintain a closed list

Algorithm Performance Measures

• Completeness:
 • Will we always find a solution when one exists?
• Optimality:
 • Will we find the shortest possible solution?
• Time complexity:
 • How long will it take to find a solution?
• Space complexity:
 • How much storage is required?

Uninformed search strategies
Breadth-first search

- Special case of best-first search
 - Best is by minimum depth
 - Can be implemented by a FIFO queue

Depth-first search

- Special case of best-first search
 - Best is by maximum depth
 - Can be implemented by a LIFO queue
Depth-first search

- Complete?
- Optimal?
- Time complexity?
- Space complexity?
- Implications for infinite graphs?

Depth-first iterative deepening

- Iterated depth-first search
 - Iteratively perform depth-first search
 - Each iteration has a depth bound
 - Gradually increase depth bound until a solution is found
Depth-first search

- Complete?
- Optimal?
- Time complexity?
- Space complexity?

Uniform-cost (Dijkstra) search

- Special case of best-first search
 - Best is by minimum cost
- Priority queue needed to sort nodes by cost
 - g-cost is the cost from the start to current state

Uniform-cost search

- Complete?
- Optimal?
- Time complexity?
- Space complexity?
Uninformed vs. informed search

• Previous approaches were goal agnostic
 • Given the same start state the search is identical
 • Incorporate information about the goal into the search

Heuristic function

• A heuristic estimates the cost to the goal from a state
 • $h(s)$ or $h(s, g)$
 • We are interested in *admissible* heuristics
 • Where $h^*(s)$ is a perfect heuristic
 • For an admissible heuristic $h(s) \leq h^*(s)$ for all s.

Heuristic function

• Sometimes assume a heuristic is consistent
 • Obeys the triangle inequality
 • $|h(a) - h(b)| \leq c(a, b)$
 • For undirected graphs

Informed search strategies
Greedy best-first search (Pure heuristic search)

- Special case of best-first search
- Best is by minimum heuristic value
- Priority queue needed to sort nodes by cost
 - h-cost is the cost from the start to current state

Assume heuristic is distance from leaves

Greedy best-first search

- Complete?
- Optimal?
- Time complexity?
- Space complexity?
Homework: Problem 3.14