Here are some important results on cardinality. Some of these are in the text, some are not. Result 1 is shown in class, result 2 is in problem set 3, and the others are on the Advanced Problems sheet. As always, we’re happy to consult about these.

Here are the results:

1. A subset A of a countable set is finite or countable.

2. Suppose that B is an infinite set and $f: \mathbb{N} \to B$ is an onto function. Prove that B is countable.

3. Suppose that B is a countable subset of \mathbb{R}. Then $B^c = \{ x \in \mathbb{R} : x \notin B \}$ is uncountable. Conclude that the set of irrational numbers is uncountable. *(You might start by showing that the union of two countable sets is a countable set.)*

4. A countable union of finite or countable sets is finite or countable. Specifically, if A_n is a finite or countable set for each $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_n$ is finite or countable.

 Give an example where each A_n is finite and $\bigcup_{n=1}^{\infty} A_n$ is also finite to see that this situation can occur. Give an example where each A_n is finite and $\bigcup_{n=1}^{\infty} A_n$ is countable to see that this situation can occur.

5. If A and B are finite sets, then $A \times B$ is a finite set.

6. If A and B are countable sets, then $A \times B$ is a countable set.

7. For a set A, $\mathcal{P}(A)$ denotes the set of all subsets of A and $\mathcal{P}(A)$ is called the *power set* of A. Prove that if $A \neq \emptyset$, then there is no onto map $f: A \to \mathcal{P}(A)$.

 To get intuition about this concept, check that $\mathcal{P}(\{0,1\}) = \{\emptyset, \{0\}, \{1\}, \{0, 1\}\}.

8. ★ **Schröder–Bernstein Theorem:** Suppose that A and B are nonempty sets. Suppose also that

 - there is a one-to-one function $f: A \to B$; and

 - there is a one-to-one function $g: B \to A$.

 Then there is a bijection $h: A \to B$. I.e. $|A| = |B|$.

 (Comment: The proof requires a definition of the function h and then a proof that h is both one-to-one and onto.)