Intro to Differential Equations
MATH 2070
Exponential and logarithmic functions review problems

Instructions: The symbol \approx means “is approximately equal to.” For purposes of this homework set, assume that \approx is actually equality. So, $\ln 2 \approx .7$ means here that $\ln 2 = 0.7$.

1. Given that $\ln 2 \approx .7$, $\ln 3 \approx 1.1$ and $\ln 5 \approx 1.6$, compute (or determine that it is not possible to compute from the information given) the following:

 a) $\ln 15$
 b) $\ln 1.5$
 c) $\ln 225$
 d) $\ln 250$
 e) $\ln 256$
 f) $\log_5 27$
 g) $\log_{27} 50$
 h) $\log_6 5$
 i) $\ln \frac{2}{15}$
 j) $\ln 17$

2. Simplify exactly:

 (a) $e^{\ln 6}$
 (b) $e^{-\ln 6}$
 (c) $e^{2\ln 3}$
 (d) $e^{3\ln 2}$
 (e) $e^{\ln 11 - \ln 13}$

3. Solve exactly for x. (Your answers may involve logarithms).

 (a) $3^x = 5$. (Take ln of both sides)
 (b) $3^{x+1} = 5^{2x}$.
 (c) $7e^x - e^{2x} = 12$. (Since $e^{2x} = (e^x)^2$, you can produce a quadratic equation in the unknown e^x.)
 (d) Shown in red is the graph of $y = 15e^x$ and in blue is the graph of $y = e^{2x} + 10$. The graphs cross at two points in the interval $-2 \leq x \leq 3$. Find the coordinates of these points.

![Graph of functions](image.png)
4. Calculus with exponential functions. Compute

(a) \(\frac{d}{dx} e^x \)
(b) \(\frac{d}{dx} e^{2x} \)
(c) \(\frac{d}{dx} (xe^{-2x}) \)
(d) \(\int e^x \, dx \)
(e) \(\int e^{2x} \, dx \)
(f) \(\int xe^{-2x} \, dx \) (Integrate by parts.)
(g) \(\int_0^1 e^x \, dx \)
(h) \(\int_0^1 e^{2x} \, dx \)
(i) \(\int_0^1 xe^{-2x} \, dx \)

5. Calculus with logarithmic functions. Compute

(a) \(\frac{d}{dx} \ln |x| \)
(b) \(\frac{d}{dx} \ln (x^2 + 1) \)
(c) \(\frac{d}{dx} (x \ln (x^2 + 1)) \)
(d) \(\int \frac{1}{x + 1} \, dx \)
(e) \(\int \frac{e^x}{e^x + 1} \, dx \)
(f) \(\int \frac{\cos (2x)}{\sin (2x) + 1} \, dx \)
(g) \(\int_0^1 \frac{1}{x + 1} \, dx \)
(h) \(\int_0^1 \frac{e^x}{e^x + 1} \, dx \)
(i) \(\int_{\pi/4}^{\pi/2} \frac{\cos (2x)}{\sin (2x) + 1} \, dx \)