1. (2.1.5) Given that the nonnegative function \(g(x) \) has the property that
\[\int_0^\infty g(x)dx = 1, \]
show that
\[
f(x_1, x_2) = \frac{2g(\sqrt{x_1^2 + x_2^2})}{\pi \sqrt{x_1^2 + x_2^2}}, \quad 0 < x_1 < \infty \quad 0 < x_2 < \infty,
\]
zero elsewhere, satisfies the conditions for a pdf of two continuous-type random variables \(X_1 \) and \(X_2 \). **Hint: Use polar coordinates**

Answer: \(f(x_1, x_2) \geq 0 \) as the ratio of two non-negative functions.

We do the change of variables \(x_1 = r \cos(\theta) \) and \(x_2 = r \sin(\theta) \); the Jacobian of this change of variables is \(r \). Thus
\[
\int \int f(x_1, x_2)dx_1dx_2 = \int_0^\infty \int_0^{\pi/2} 2g(r) \frac{\pi r}{2} drd\theta
\]
\[
= \int_0^\infty g(r)dr = 1.
\]
so \(f(x_1, x_2) \) satisfies the conditions for a joint PDF of \(X_1 \) and \(X_2 \).

2. (2.1.8) Let 13 cards be taken, at random and without replacement, from an ordinary deck of playing cards. If \(X \) is the number of spades in these 13 cards, find the pmf of \(X \). If, in addition \(Y \) is the number of heardts in these 13 cards, find the probability \(P(X = 2, Y = 5) \). What is the joint pmf of \(X \) and \(Y \). **Answer:**

We have
\[
p_X(x) = \binom{13}{x} \binom{39}{13-x} \binom{52}{13}/\binom{52}{13}
\]
\[
p_{X,Y}(x, y) = \binom{13}{x} \binom{10}{y} \binom{26}{13-x-y} \binom{52}{13}/\binom{52}{13}.
\]
and
\[P(X = 2, Y = 5) = P(X, Y)(2, 5) = \binom{13}{5} \binom{26}{6} \binom{6^2}{13} \]

3. (2.1.14) Let \(X_1, X_2 \) be two random variables with joint pmf \(p(x_1, x_2) = (1/2)^{x_1+x_2} \) for \(x_i \in \{1, 2, 3, 4, \ldots\} \) with \(i = 1, 2 \) and zero elsewhere. Determine the joint mgf of \(X_1, X_2 \). Show that \(M(t_1, t_2) = M(t_1, 0)M(0, t_2) \).

Answer

\[
M(t_1, t_2) = \mathbb{E}[e^{t_1 X_1 + t_2 X_2}] = \sum_{x_1=1}^{\infty} \sum_{x_2=1}^{\infty} \frac{1}{2} e^{t_1 x_1 + t_2 x_2}
\]
\[
= \sum_{x_1=1}^{\infty} \sum_{x_2=1}^{\infty} \left(\frac{1}{2} e^{t_1/2} \right)^{x_1} \left(\frac{1}{2} e^{t_2/2} \right)^{x_2}
\]
\[
= \sum_{x_1=1}^{\infty} \left(\frac{1}{2} e^{t_1/2} \right)^{x_1} \left(\frac{e^{t_2/2}}{1 - e^{t_2/2}} \right)
\]
\[
= \left(\frac{e^{t_2/2}}{2 - e^{t_2}} \right) \left(\frac{e^{t_1}}{2 - e^{t_1}} \right)
\]

so long as \(t_1 < \ln(2) \) and \(t_2 < \ln(2) \) so that the geometric series converge. That \(M(t_1, t_2) = M(t_1, 0)M(0, t_2) \) is clear.

4. (2.1.16) Let \(X \) and \(Y \) have the joint pdf \(f(x, y) = 6(1 - x - y) \) for \(x + y < 1 \), \(0 < x, 0 < y \) and zero elsewhere. Compute \(P(2X + 3Y < 1) \) and \(\mathbb{E}[XY + 2X^2] \).

Answer:

\[
P(2X + 3Y < 1) = \int_0^{1/2} \left(\int_0^{(1-2x)/3} 6(1 - x - y) dy \right) dx
\]
\[
= 6 \int_0^{1/2} (y - xy - y^2/2)_{y=0}^{(1-2x)/3} dx
\]
\[
= \int_0^{1/2} 5x/3 - 14x/3 + 8x^2/3 dx
\]
\[
= \frac{5x}{3} - \frac{7x^2}{3} + \frac{8x^2}{9} \bigg|_0^1 = \frac{13}{36}
\]

\[
\mathbb{E}[XY + 2X^2] = \int_0^1 \left(\int_0^{1-x} (xy + 2x^2) 6(1 - x - y) dy \right) dx = \cdots = \frac{1}{4}
\]

Sorry, too lazy to type out the steps.
5. (2.2.2) Let X_1 and X_2 have the joint pmf $p(x_1, x_2) = \frac{x_1 x_2}{36}$ for $x_1 = 1, 2, 3$ and $x_2 = 1, 2, 3$; zero elsewhere. Find first the joint pmf of $Y_1 = X_1 X_2$ and $Y_2 = X_2$, and then find the marginal pmf of Y_1.

Answer

$P_{Y_1, Y_2}(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2) = P(X_1 X_2 = y_1, X_2 = y_2) = \frac{y_1}{36}$.

for $y_2 = 1, 2, 3$ and $y_1 = y_2, 2y_2, 3y_3$; zero otherwise.

$P_{Y_1}(y_1) = \sum_{y_2} P_{Y_1, Y_2}(y_1) = \begin{cases} \frac{y_1}{36} & y_1 = 1, 4, 9, \\ \frac{y_1}{36} & y_1 = 2, 3, 6. \end{cases}$

6. (2.2.7) Use the formula (2.2.1) to find the pdf of $Y_1 = X_1 + X_2$, where X_1 and X_2 have the joint pdf $f_{X_1, X_2}(x_1, x_2) = 2e^{-(x_1 + x_2)}$, $0 < x_1 < x_2 < \infty$, zero elsewhere.

Answer:

$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} f_{X_1, X_2}(y_1 - y_2, y_2) dy_2$

$= \int_{y_1/2}^{y_1} 2e^{-y_1} dy = y_1 e^{-y_1}$

for $y_1 > 0$. Here the bounds arise as $y_1 - y_2 < y_2$, so $y_2 > y_1/2$ and $y_1 - y_2 > 0$, so $y_2 < y_1$.

3