(1) If \(n \) lines are drawn in the plane \((n \geq 3) \) so that no two of the lines are parallel, and no three of the lines meet in a single point, then show that among the regions that the lines partition the plane into, at least one is a triangle.

(2) A tromino is a rectangle whose dimensions are 1 cm by 3 cm. Let \(n \) be of the form \(3k + 1 \) where \(k \) is a positive integer. Consider an \(n \times n \) square grid of little squares each 1 cm on a side. How many of the little squares have the following property: if deleted, the rest of the board can be perfectly covered by non-overlapping trominoes?

(3) Let \(\lfloor x \rfloor \) be the largest integer less than or equal to \(x \). Show that \(\lfloor (2 + \sqrt{3})^n \rfloor \) is odd for all positive integers \(n \).

(4) Let \(h(t) \) be a continuous function on the interval \([0, 1]\) such that \(h(0) = h(1) = 0 \). Show that there exists a real number \(x \in [0, \frac{2012}{2013}] \) such that \(h(x) = h(x + \frac{1}{2013}) \).

(5) Let \(n \) be a positive integer, and let \(a_1, \ldots, a_n \) be positive real numbers. Prove that \[
(a_1^{2013} + a_2^{2013} + \cdots + a_n^{2013})^{4013} \geq (a_1^{4013} + a_2^{4013} + \cdots + a_n^{4013})^{2013}.
\]

(6) Notice that the number 78 is a three-digit palindrome when written in base 5, since \((78)_{10} = (303)_5 \); it is also a three-digit palindrome when written in base 7, since \((78)_{10} = (141)_7 \). Prove that there are infinitely many positive numbers \(N \) that are three-digit palindromes to two different bases at the same time.

(7) Let \(T \) be a triangle with the following property: if \(T' \) is any triangle with the same perimeter and area as \(T \), then \(T' \) is actually congruent to \(T \). Show that \(T \) is equilateral.

(8) Which positive integers \(n \) have the property that there exist choices of the \(\pm \) signs for which
\[
\pm 1 \pm 2 \pm 3 \pm \cdots \pm (n - 1) \pm n = 0?
\]