Properties

- Admissible / monotonic non-decreasing / consistent
- Admissible != monotonicity
- Admissible != consistent
- Admissible != first path opened to any node is optimal
- Consistent => admissible
- Consistent => nodes are not re-opened

A*

- Best-First Search
 - $f = g + h$
 - f is an estimate of the complete path length
- Optimality?
 - Not optimal unless we guarantee properties of our heuristic

Optimality of A*

- If edges have minimum positive cost
- If h is non-negative and non-overestimating
 - admissible
- The goal node will be expanded when we have an optimal path to the goal
A* Optimality Proof (1)

- Induction like Dijkstra’s to show that we always have a node on a path to the goal on the open list (with optimal cost)
- If there is a path to a goal we will eventually find it
 - Nodes on the path are always on OPEN
- If we run forever, there cannot be a path to a goal
 - g is always increasing

A* Optimality Proof (2)

- When a goal is chosen for expansion, the cost must be optimal
 - Suppose goal has f-cost, K
 - All nodes in OPEN have cost $\geq K$
 - h is a lower bound, so f is a lower bound
 - No path to goal with cost less than K

A* - Analysis

- Time Complexity
 - How many nodes do we generate?
 - How expensive is the open list?
- Assume $h(n) = 0$ for all n
 - Same as Dijkstra $O(b^{c/e})$
- Assume $h(n) = h^*(n)$ for all n
 - Will go straight to the goal(???)

A* - Time Optimality (in node expansions)

- Assume consistent heuristic
- Compare to all algorithms which find opt. sol.
- For a given consistent heuristic, every admissible algorithm must expand all nodes expanded by A^*
 - admissible algorithm = guaranteed to find opt. solution
 - nodes surely expanded by $A^* = f(n) < c$
 - $c = \text{optimal solution cost}$
A* Optimality Proof (1)

- Assume there exists an algorithm B that expands less nodes that A* on problem P
 - There must be some node m not expanded by B, but expanded by A*
 - $f(m) = g(m) + h(m) < c$
 - Create a new problem P' with new goal g'
 - Add an edge with cost $h(m)$ to g'

Can we make A* go faster?

- A*: $f(n) = g(n) + h(n)$
- Weighted A*: $F(n) = (1-w) \cdot g(n) + w \cdot h(n)$
 - If $w = 1$?
 - Pure Heuristic Search
 - If $w = 0$?
 - Dijkstra's

A* Optimality Proof (2)

- Goal g' is now shorter than the original goal
 - $g(g') = g(m) + c(m, g') = g(m) + h(m) = f(m) < c$
 - g' will not be found by B, but will be found by A*

 Is our heuristic still consistent/admissible?
 - $|h(m) - h(g')| \leq c(m, g')$
 - $|c(m, g') - 0| \leq c(m, g')$

Demonstrate A*

- Show A* on several problems
 - Expand one node at a time
 - Examine tie-breaking
 - Difference between Manhattan distance and octile distance
IDA*
- Previously, BFS \rightarrow DFS \rightarrow DFID
- Now, A* \rightarrow IDA*
- Perform DFS within f-cost limits
- Korf, 1985

IDA* Pseudo-Code
```
IDA*(start, goal)
limit ← f-cost(start)
do
    path = cost-limited-DFS(start, goal, limit)
    limit ← newlimit
while (!path)
return path
```

Cost limits
- How do we determine the next cost limit?
 - Keep track of the minimum f-cost larger than limit found during search
 - This is the next limit

Example
- $[0 \ 1 \ 2 \ | \ 3 \ 4 \ 5]$
- $[0 \ 1 \ 2 \ | \ 4 \ 3 \ 5]$
- Admissible heuristic
Termination

- Assume
 - Solution exists
 - Edges costs have minimum finite value
 - Non-negative heuristic values

- If no heuristic, uniform edge-cost, same as DFID

Termination (2)

- All path costs are strictly increasing
- All nodes with a given cost are expanded in each iteration
 - Cost-limit strictly increasing
- At least 1 new node expanded each iteration
- No infinite-length paths of finite cost
- Must eventually expand the goal

Optimality

- Frontier -- nodes which have been generated but not expanded
 - Frontier always contains node on optimal path to goal
- Cost thresholds are monotonically increasing
- No thresholds > optimal path length
 - $f(n) < \text{optimal solution cost}$
- Goal has $f(n) = g(n)$ -- no shorter solution
 - Cannot run with a threshold > $g(\text{goal})$

Space Complexity

- Assume goal has cost c, minimum edge cost e
- Maximum depth of c/e (+1 for expanding at this depth)
- e is constant, so space is $O(c)$