A History of Traditional Computer Game AI

Nathan Sturtevant
CMPUT 3704-1/4704-1
Winter 2011

With thanks to Jonathan Schaeffer

What does it mean to be intelligent?

Human Strengths

• Intuition
• Visual patterns
• Deeply crafted knowledge
• Experience applied to new situations

Computer Strengths

• Fast, precise computation
• Large, perfect memory
• Repetitive, boring tasks
Why games?

• Well defined
• Well known
• Measurable
• Only 60 years ago it was an open question whether computers could play games
 • Game play was thought to be a creative, human activity, which machines would be incapable of

The downside of games

• Considered the “Drosophila of Artificial Intelligence”
• Are we breeding racing fruit flies?
• Game research isn’t considered “real” research

Checkers

History

• Arthur Samuel began work on Checkers in the late 50’s
 • Wrote a program that “learned” to play
 • Beat Robert Nealey in 1962
 • IBM advertised as “a former Connecticut checkers champion, and one of the nation’s foremost players”
 • Nealey won rematch in 1963
 • Nealey didn’t win Connecticut state championship until 1966
 • Crushed by human champions in 1966
Reports of success overblown

- “...it seems safe to predict that within ten years, checkers will be a completely decidable game.” Richard Bellman, Proceedings of the National Academy of Science, 53(1965): p. 246.
- “Although computers had long since been unbeatable at such basic games as checkers....” Clark Whelton, Horizon, February 1978.
- “...an improved model of Samuel's checkers-playing computer today is virtually unbeatable, even defeating checkers champions foolhardy enough to ‘challenge’ it to a game.” Richard Restak, The Brain: The Last Frontier, 1979, p. 336.
- “...the Duke program, Bierman believes, is already ‘knocking at the door’ of the world championship. Jensen and Truscott regard it as now being about the 10th strongest player in the world.” Martin Gardner, Scientific American, January 1980, p. 25.

Human Champ: Marion Tinsley

- Closest thing to perfect human player
- Over 42 years loses only 3(!) games of checkers.

Computer Challenger: Chinook

- Have to overcome the stigma of checkers being “solved” in 1963.
- Project takes five years, 10 people, > 200 computers working around the clock, and terabytes of data.

Outcome

- The first computer to win a human world championship (1994)
- Checkers is solved (2007)!
- Perfect play leads to a draw
- Humans will never win against a computer again
Secret: Endgame Databases

- Endgame databases
 - Searched all positions with 10 or fewer pieces
 - Each identified with perfect win, loss, draw info
 - 39 trillion positions in the program’s memory
 - Exceeds human abilities
 - Introduces perfect knowledge into the search
 - Factual knowledge, but without the ability to generalize it

The 100(?)-year position

The 100-Year Position (white to move)
Give it to humans for 100 years… win!

Give it to Chinook for one I/O… draw!
The 197-Year Position

Chess

1770 - The Turk
Further Work

- 1910 - El Ajedrecista plays King+Rook vs. King endgames
- 1950’s - Claude Shannon, Alan Turing, John McCarthy begin work on Chess
- 1968, David Levy bets that no computer program would win a chess match against him within 10 years
 - Wins his bet 10 years later

Human Champ: Garry Kasparov

- Holds the record for the longest time as the #1 rated player (1986-2005)
- Reached a 2851 Elo rating, the highest rating ever achieved

Computer Challenger: Deep Blue

- 2,400 lbs
- 512 processors
- 200,000,000 pos/sec

Second match results - 1997

- Kasparov won game 1
- Kasparov lost game 2
- Kasparov self-destructed in game 6 and lost the match

In the video he rails on about game 2. He was crushed in the game but in the final position there is a miracle that saves the game. No one saw it at the time, and certainly not Kasparov, who resigned. So he says DB did not really win a single game. He fails to mention that DB had a draw in game 1 and then a bug showed itself and they played the worst move on the board and then resigned. Seems odd that he does not belittle his game 1 “victory” but is quick to discount DB’s.
Kasparov’s Response

- Who is better?

Post-analysis

- Exhibition match; scientific data point can’t be repeated.
- Man was superior in 1997 but by 2006 it appears that man is no longer competitive
- Deep Fritz played world chess champion Vladimir Kramnik in November 2006
- Used a personal computer containing two Intel Core 2 Duo CPUs, capable of evaluating only 8 million positions per second
- Searched to an average depth of 17 to 18 plies

Secret: Brute-Force

- Brute-force search
 - Consider all moves as deeply as possible
 - Some moves can be provably eliminated
 - 200,000,000 per second versus Kasparov’s ~2
 - 99.99% of the positions examined are silly by human standards
- Lots of search… and little knowledge
- Tour de force for engineering

Backgammon
Human Champ: Malcolm Davis

- World backgammon champion.
- Agrees to play exhibition matches against a computer; narrowly avoids becoming part of computing history.

Computer Challenger: TDGammon

- Gerry Tesauro builds TDGammon over 8 years. Learned to play strong backgammon.
- Unable to beat champion in match; too many games needed for statistical significance.

Secret: TD-Learning

- Pioneering success for temporal difference learning.
- Combination of search, expert knowledge, and a neural net tuned using TD learning.
- Tour de force for artificial intelligence.

Othello (Reversi)

- Backgammon happens to be very well suited for these techniques.
Human Champ: Takeshi Murakami

- World Othello Champion

Computer Challenger: Logistello

- Had to overcome the stigma of Othello being “solved” in 1980 and 1990.
- Michael Buro’s one-man effort for five years produces Logistello.
- 6 game match
 - Aug. 4-7, 1997
 - Logistello wins 6-0

Secret: Machine Learning

- Automatically discovered and tuned knowledge
- Samples patterns to see if its presence in a position can be correlated with success
- “Knowledgeable” program but no one understands the knowledge

Scrabble

- Tuned 1.5 million parameters using self-play games with feedback
- Samples patterns to see if its presence in a position can be correlated with success
- “Knowledgeable” program but no one understands the knowledge
Human Champion: Adam Logan

• Math professor.
• 1997 Canadian and North American scrabble champion

Computer Challenger: Maven

Brian Sheppard spends 14 years developing his Scrabble program.

Maven versus Logan: A Classic

Brian Sheppard's commentary:

• The following game is in the author’s opinion the best Scrabble board game ever played in a tournament or match. The game is the 12th game in the AAAI-98 exhibition match between MAVEN and Adam Logan. After losing three of the first four games, MAVEN had come back strongly to take a 7 to 4 lead. In total, there were 14 games scheduled.
The Verdict...

Computers are better than humans and the gap will only grow with faster computers.

The Secret?

- **Memory**
 - Maven has the entire dictionary in its memory
 - over 100,000 words

- **Simulations**
 - simulates 1,000 game scenarios per decision
 - typically 700 legal moves (more with a blank)
 - becomes a constraint-satisfaction and optimization problem

Poker

Human Champion: Phil Laak

- Phil Laak (aka the unibomber) holds a World Poker Title
- Stronger at no-limit texas hold’em
- Ali Eslami was invited by Phil to play against University of Alberta computers
Computer Challenger: Polaris

- Poker is a hard problem because of multiple opponents, imperfect information, and deception
- Ongoing project at the UofA (~20 years)

The result (part 1)

- 2007 first man-machine match
- Narrow loss for UofA programs

The result (part 2)

- 2008, second match
 - Played against a team of 2-player experts
 - Polaris wins

The Secret?

- Precise probability calculations
- Game theoretic solutions
- Use short-term and long-term statistics to model each opponent
- Not playing most popular form of game

Matt Hawrilenko
IJay Palansky
Bridge

Human Champ: Zia Mahmood

- In 1990 offers £1,000,000 bet that no program can defeat him.
- December 1, 1996
 - Cancels bet when faced with a possible challenger.

Computer Challenger: GIB

- Matt Ginsberg develops the first expert-level bridge program, GIB (1998).

 - Finishes 12th in the World Championship.

The Verdict...

- Man is better than machine!
- Likely to remain that way for a while yet
 - Difficulties in understanding the bidding
The Secret?

- GIB does 100 simulations for each decision
- Deals cards to opponents consistent with available information
- Chooses the action that leads to the highest expected return
- Program does not understand things like “finesse” or “squeeze”
- Simulations contain implicit knowledge

Go

Human Champion: Zhou Junxun

- Ranked 9-dan
- Winner of 43 domestic and 2 international titles

Computer Challenger: Fuego

- Written by Markus Enzenberger and Martin Müller
- Both had strong Go programs
- Teamed up to write stronger program
Result

• Fuego was the first computer program to win an official game of 9x9 Go against a 9-Dan professional player in 2009
 • Thought to be impossible 10 years ago
 • Still not playing on 19x19 board

The secret?

• Monte-Carlo Tree Search
 • Use heuristic to choose good actions
 • Play out millions of games guessing the best actions for each player
 • Working with IBM on massively parallel hardware to improve performance

Is there intelligence in games?

“Saying Deep Blue doesn’t really think about chess is like saying an airplane doesn’t really fly because it doesn’t flap its wings”

Drew McDermott
New York Times
May 14, 1997

Where is the intelligence?
Where is the intelligence?

- In the designers of the AI software
- General Game Playing
 - Write a program that can play any game
 - Games defined by logic language
 - University of Alberta entry, Maligne, took second place last year
- Intelligence still lies with designers