Today

- Handouts
- Introduction to course project
 - Play against my AI
 - Play Hop Step on iPads against each other
 - Discuss the game and its properties
- State Spaces
 - How do we represent states?
 - How should we implement Hop Step?

State Spaces

- What is a state?
 - What does it contain?
 - How many of them are in a game?

Analyze tic-tac-toe

- How many states are possible?
- Several ways to calculate:
 - 9 locations, each of which can have 3 values
 - 19,683 possibilities
 - But, the number of x’s and o’s should be similar!
 - 9! (362,880) ways to play a game
 - Only 138 ways a game can end
 - Symmetry! (eg Only 3 first moves)
Analyze Nim

- Start with a stack of N items
 - Each person removes either 1 or 2 items
 - The first person who can't remove an item loses
- (Play a game between two students)
- How many states?
 - Only 2*N possible states (why not 2*N+2?)
- How many outcomes?
 - Just 2

Scaling it up?

- What happens if we increased the board size?
 - Tic-tac-toe
 - Number of legal moves would greatly increase
 - Number of states would increase
 - Nim
 - Number of legal moves stays the same
 - Number of states increases
 - Difference between placing pieces and moving pieces

First-level analysis

- How would we build a general model?
 - Assume that there are b actions (always the same)
 - Assume we are searching to depth d
 - \(b^d \) states! (Growing exponentially)
 - Similar implications and algorithms as used in single-agent search

How large are some common games?

- Connect Four has \(10^{13} \)
- Checkers has \(10^{20} \) states; \(10^{18} \) reachable
- Chess has about \(10^{47} \) states
- Go has about \(10^{171} \)
What does this imply?

- If Deep Blue is looking at 300,000,000 states / sec
 - Can’t be analyzing anything close to the whole game
- How much memory does our machine have?
 - Can’t be storing all these states in memory
 - May want/need an efficient state representation
 - (Allocating memory is very slow)

State Model

- A state is an abstract representation of a game
- A state should provide:
 - A successor function:
 - Get legal moves or legal successor states?
 - Generally use depth-first algorithms and only keep 1 copy of the full game state in memory
 - Moves can often be represented efficiently

Why do we care about this?

- Ken Thompson showed a strong correlation between depth of search and playing strength
 - That’s why Deep Blue was engineered to explore 300 million positions per second
- How do you improve depth of search?
 - Make your program faster

State Model

- A state should provide:
 - Functions to apply and undo actions
 - A hash function
 - Will discuss in more depth later
 - Information about whose move it is
 - A test to see if the game is over
 - Information about who won
 - [Ability to copy a state]