Group actions on topological graphs

Valentin Deaconu, Alex Kumjian, John Quigg

(work in progress)

GPOTS, Denver, 15 June 2010
We recall basic facts about topological graphs and their C^*-algebras, with examples.

We introduce the Cayley graph of a finitely generated locally compact group and the skew product $E \times_c G$ of a topological graph E by a group G via a cocycle $c : E^1 \to G$.

We define the action of a group G on a topological graph E. We give a structure theorem for free and proper actions, and define the quotient graph E/G.

We also introduce the fundamental group and the universal covering of a topological graph via a geometric realization. We give examples, one having the Baumslag-Solitar group as fundamental group.
Let $E = (E^0, E^1, s, r)$ be a topological graph. Recall that E^0 (vertices) and E^1 (edges) are locally compact (Hausdorff) spaces, $s, r : E^1 \to E^0$ are continuous maps, and s is a local homeomorphism.

The C^*-algebra $C^*(E)$ is the Cuntz-Pimsner algebra $\mathcal{O}_\mathcal{H}$ of the C^*-correspondence $\mathcal{H} = \mathcal{H}(E)$ over $A = C_0(E^0)$, obtained as a completion of $C_c(E^1)$ using

$$\langle \xi, \eta \rangle (v) = \sum_{s(e) = v} \overline{\xi(e)} \eta(e), \xi, \eta \in C_c(E^1)$$

$$(\xi \cdot f)(e) = \xi(e)f(s(e)), (f \cdot \xi)(e) = f(r(e))\xi(e).$$
Examples

- **Example 1.** Let $E^0 = E^1 = \mathbb{T}$, $s(z) = z$, and $r(z) = e^{2\pi i \theta} z$ for $\theta \in [0, 1]$ irrational. Then $C^*(E) \cong A_\theta$, the irrational rotation algebra.

- **Example 2.** Let $E^0 = E^1 = X$, for X a locally compact metric space, let $s = id$ and let $r = h : X \to X$ be a homeomorphism. Then $C^*(E) \cong C_0(X) \rtimes \mathbb{Z}$, since $C^*(E)$ is the universal C^*-algebra generated by $C_0(X)$ and a unitary u satisfying $\hat{h}(f) = u^*fu$ for $f \in C_0(X)$, where $\hat{h}(f) = f \circ h$.

- **Example 3.** Let $n \in \mathbb{N} \setminus \{0\}$ and $m \in \mathbb{Z} \setminus \{0\}$. Take

$$E^0 = E^1 = \mathbb{T}, s(z) = z^n, r(z) = z^m.$$

If $m \notin n\mathbb{Z}$, then $C^*(E)$ is simple and purely infinite.
The Cayley graph

- The Cayley graph of a finitely generated locally compact group. A locally compact group G is finitely generated if there is a finite subset $S \subset G$ such that $G = \langle S \rangle$. If $S = \{h_1, h_2, \ldots, h_n\}$, define the Cayley graph $E = E(G, S)$ with $E^0 = G$, $E^1 = S \times G$, $s(h, g) = g$, and $r(h, g) = gh$.

- Then $E(G, S)$ becomes a topological graph. For G discrete finitely generated, we get the usual notion of Cayley graph. (The Cayley graph may change if we change the set of generators).

- Example. For $G = (\mathbb{R}, +)$ and $S = \{1, \theta\}$, where $\theta < 0$ is irrational, the Cayley graph E has $E^0 = \mathbb{R}$, $E^1 = \{1, \theta\} \times \mathbb{R}$ and $s(1, x) = x$, $r(1, x) = x + 1$, $s(\theta, x) = x$, $r(\theta, x) = x + \theta$.

- Then $C^*(E)$ is simple and purely infinite, isomorphic to $\mathcal{O}_2 \rtimes_\alpha \mathbb{R}$. Here $\alpha_t(V_0) = e^{it\theta}V_0$, $\alpha_t(V_1) = e^{it}V_1$ for $t \in \mathbb{R}$ and V_0, V_1 are the standard generators of the Cuntz algebra \mathcal{O}_2.

Valentin Deaconu, Alex Kumjian, John Quigg
Skew products

- **Skew products of topological graphs.** Let $E = (E^0, E^1, s, r)$ be a topological graph, let G be a locally compact group, and let $c : E^1 \rightarrow G$ be continuous.

- Define the skew product graph $E \times_c G = (E^0 \times G, E^1 \times G, \tilde{s}, \tilde{r})$, where

 $$\tilde{s}(e, g) = (s(e), g), \quad \tilde{r}(e, g) = (r(e), gc(e)).$$

- Then $E \times_c G$ becomes a topological graph using the product topology. If E has one vertex and n loops $\{e_1, \ldots, e_n\}$ and if G has a set of generators $S = \{h_1, \ldots, h_n\}$ such that $c(e_i) = h_i, i = 1, \ldots, n$ then we get the Cayley graph $E(G, S)$.
Graph morphisms

Let E, F be two topological graphs. A graph morphism $\phi : E \to F$ is a pair of continuous maps $\phi = (\phi^0, \phi^1)$ such that the diagram

\[
\begin{array}{cccc}
E^0 & \xleftarrow{s} & E^1 & \xrightarrow{r} & E^0 \\
\downarrow{\phi^0} & & \downarrow{\phi^1} & & \downarrow{\phi^0} \\
F^0 & \xleftarrow{s} & F^1 & \xrightarrow{r} & F^0
\end{array}
\]

is commutative.

A graph morphism ϕ is a graph covering if both ϕ^0, ϕ^1 are covering maps.

An isomorphism is a graph morphism $\phi = (\phi^0, \phi^1)$ such that ϕ^i are homeomorphisms for $i = 0, 1$. It follows that $\phi^{-1} = ((\phi^0)^{-1}, (\phi^1)^{-1})$ is also a graph morphism.
A locally compact group G acts on E if there are continuous maps $\lambda^i : G \times E^i \to E^i$ for $i = 0, 1$ such that $g \mapsto \lambda_g$ is a homomorphism from G into $Aut(E)$.

The action λ is called **free** if $\lambda^0_g(v) = v$ for some $v \in E^0$ implies $g = 1_G$. In this case the action of G is also free on E^1.

The action is called **proper** if the maps $G \times E^0 \to E^0 \times E^0$, $(g, v) \mapsto (\lambda^0_g(v), v)$ and $G \times E^1 \to E^1 \times E^1$, $(g, e) \mapsto (\lambda^1_g(e), e)$ are proper. (It is sufficient to require properness of the first map).

Example. A group G acts freely and properly on a skew product $E \times_c G$ by $\lambda^0_g(v, h) = (v, gh)$ and $\lambda^1_g(e, h) = (e, gh)$. In particular, a f.g. group G acts freely and properly on its Cayley graph $E = E(G, S)$. The quotient graph E/G has $|S|$ loops and one vertex.
Principal G-bundles and the quotient graph

A map $q : P \to X$ is called a **principal G-bundle** if there is a free and proper action of G on P such that P/G can be identified with X.

Theorem

Given $F = (F^0, F^1, s, r)$ a topological graph, a principal G-bundle $P \to F^0$ and an isomorphism of pull-backs $s^*(P) \cong r^*(P)$, there is a topological graph $E = (E^0, E^1, \tilde{s}, \tilde{r})$ with a free and proper action of G such that $E^0 = P, E^1 = s^*(P)$ and $F \cong E/G$. Moreover, every topological graph E on which G acts freely and properly arises this way.

Corollary

The topological graph E constructed above is G-equivariantly isomorphic to a skew product $F \times_c G$ iff the principal bundle $E^0 \to F^0$ is trivial.
The geometric realization of a topological graph E is

$$R(E) := E^1 \times [0, 1] \sqcup E^0 / \sim,$$

where $(e, 0) \sim s(e)$ and $(e, 1) \sim r(e)$ (a kind of double mapping torus).

If the group G acts on the topological graph E, then G acts on $R(E)$ by

$$g \cdot (e, t) = (\lambda_g^1(e), t), \quad e \in E^1, t \in [0, 1], \quad g \cdot v = \lambda_g^0(v), \quad v \in E^0.$$

The fundamental group $\pi_1(E)$ is by definition $\pi_1(R(E))$. The universal covering \tilde{E} of E is a simply connected graph which covers E.

The group $\pi_1(E)$ acts freely on \tilde{E}, and the quotient graph \tilde{E}/G is isomorphic to E.

If E is discrete, then $\pi_1(E)$ is free, and the universal covering is a tree T.
Proposition.

Let E be such that $R = R(E)$ has a universal covering space \tilde{R}. Then \tilde{R} is homeomorphic to the geometric realization of a simply connected topological graph \tilde{E}, which covers E.

Proof.

Let $\rho : \tilde{R} \to R$ be the canonical map, let $\tilde{E}^0 = \rho^{-1}(E^0)$, and let $\tilde{E}^1 = \rho^{-1}(E^1 \times \{1/2\})$. In order to define the range and the source maps, we use the unique path lifting property of the map ρ.

Corollary

To obtain other coverings of a graph E as above, we take a subgroup H of $\pi_1(E)$, and take the corresponding topological graph of the quotient space \tilde{R}/H.
Examples

Example 1. Let E with $E^0 = E^1 = \mathbb{T}$ and with $s(z) = z$, $r(z) = e^{2\pi i \theta} z$ for θ irrational. Then $R(E)$ is homeomorphic to \mathbb{T}^2, hence $\pi_1(E) \cong \mathbb{Z}^2$.

The universal covering \tilde{E} has $\tilde{E}^0 = \tilde{E}^1 = \mathbb{R} \times \mathbb{Z}$, and $s(y, k) = (y, k)$, $r(y, k) = (y + \theta, k + 1)$. Here \mathbb{Z}^2 acts on \tilde{E} by $(j, m) \cdot (y, k) = (y + m\theta + j, k + m)$, and $\tilde{E}/\mathbb{Z}^2 \cong E$.

Example 2. Let $h : X \to X$ be a homeomorphism, and let E with $E^0 = E^1 = X$, $s = id$ and $r = h$. Then $R(E)$ is homeomorphic to the mapping torus of h.

The universal covering \tilde{E} has $\tilde{E}^0 = \tilde{E}^1 = \tilde{X} \times \mathbb{Z}$, where \tilde{X} is the universal covering of X. The source and range maps are $s(y, k) = (y, k)$, $r(y, k) = (\tilde{h}(y), k + 1)$, where $\tilde{h} : \tilde{X} \to \tilde{X}$ is a lifting of h.

We have $\pi_1(E) \cong \pi_1(X) \rtimes \mathbb{Z}$, and the action of $\pi_1(X) \rtimes \mathbb{Z}$ on $\tilde{X} \times \mathbb{Z}$ is given by $(g, m) \cdot (y, k) = (g \cdot \tilde{h}^m(y), k + m)$.
Examples cont’d

Example 3. Let again $E^0 = E^1 = \mathbb{T}$ with $s(z) = z^p$, $r(z) = z^q$ for p, q positive integers. Then $R(E)$ is obtained from a cylinder, where the two boundary circles are identified using the maps s and r.

Figure: The case $p = 2$, $q = 3$.
Examples cont’d

- Then $\pi_1(E)$ is isomorphic to the Baumslag-Solitar group $B(p, q) = \langle a, b \mid ab^p a^{-1} = b^q \rangle$.

- For $p = 1$ or $q = 1$, this group is a semi-direct product and it is amenable. For $p \neq 1, q \neq 1$ and $(p, q) = 1$, it is not amenable.

- The universal covering space of $R(E)$ is obtained from the Cayley graph of $B(p, q)$ by filling out the squares. It is the cartesian product $T \times \mathbb{R}$, where T is the Bass-Serre tree of $B(p, q)$, viewed as an HNN-extension of $\pi_1(\mathbb{T})$.

- Recall that $B(p, q)$ is the quotient of the free product $\pi_1(\mathbb{T}) \ast \mathbb{Z}$ by the relation $as_\ast(b)a^{-1} = r_\ast(b)$, where a is the generator of \mathbb{Z}, $b \in \pi_1(\mathbb{T})$, and $s_\ast, r_\ast : \pi_1(\mathbb{T}) \hookrightarrow \pi_1(\mathbb{T})$.
Examples cont’d

\[\begin{align*}
ba^{-1} & \; \rightarrow \; b \; \rightarrow \; b^{-1} & \; \rightarrow \; b^2 & \; \rightarrow \; b^{-1}b^3 & \; \rightarrow \; b^3 & \; \rightarrow \; b^{-1}b^2 & \; \rightarrow \; b^2a \; \rightarrow \; b^2a^{-1}b & \; \rightarrow \; b^2a b & \; \rightarrow \; b^2a b^{-1}b^2 & \; \rightarrow \; b^2a b^{-1}b^3 & \; \rightarrow \; b^2a^{-1}b^2 & \; \rightarrow \; b^2a^{-1}b^3 & \; \rightarrow \; b^5
\end{align*} \]

\[\begin{align*}
a & \; \rightarrow \; ab & \; \rightarrow \; ab^2 = b^3a & \; \rightarrow \; bab & \; \rightarrow \; bab^2 = b^4a & \; \rightarrow \; b^2ab & \; \rightarrow \; b^2ab^2 = b^5a
\end{align*} \]

Figure: Cayley complex for \(B(2, 3) \).
Examples cont’d

- The 1-skeleton is the directed Cayley graph of $B(2, 3)$, where the generators a, b multiply on the right. The group action is given by left multiplication.

- In the corresponding tree T, each vertex has 5 edges. The vertex set T^0 is identified with the left cosets $g\langle b \rangle \in B(2, 3)/\langle b \rangle$, and the edge set T^1 with the left cosets $g\langle b^2 \rangle \in B(2, 3)/\langle b^2 \rangle$.

- The source and range maps are given by

 $s(g\langle b^2 \rangle) = g\langle b \rangle, \quad r(g\langle b^2 \rangle) = ga^{-1}\langle b \rangle$ for $g \in B(2, 3)$.

- We have $\tilde{E}^0 \cong T^0 \times \mathbb{R}, \tilde{E}^1 \cong T^1 \times \mathbb{R}$ with

 $\tilde{s}(t, y) = (s(t), py), \tilde{r}(t, y) = (r(t), qy)$ for $t \in T^1$ and $y \in \mathbb{R}$.

- The group $B(p, q)$ acts freely and properly on \tilde{E}, and the quotient graph $\tilde{E}/B(p, q)$ is isomorphic to E.

- In particular, \tilde{E} is not a skew product. We have $C^*(\tilde{E}) \rtimes_r B(p, q)$ strongly Morita equivalent to $C^*(E)$.
C. Anantharaman-Delaroche, J. Renault, Amenable groupoids.
G. Baumslag, Topics in combinatorial group theory.
M. Bridson, A. Haefliger, Metric spaces of non-positive curvature.
References cont’d

- R. C. Lyndon, P. E. Schupp, Combinatorial group theory.

- M. Pimsner, *A Class of C^*-Algebras Generalizing both Cuntz-Krieger Algebras and Crossed Products by \mathbb{Z}*.