This continues the discussion of how to solve systems of the form \(\frac{dY}{dt} = AY \), where \(A \) is a 2 \times 2 matrix. In this handout, we consider the case where \(A \) is a 2 \times 2 matrix with complex eigenvalues \(\lambda = \alpha \pm i\beta \), where \(\alpha \) and \(\beta \) are real and \(\beta \neq 0 \). Note that we may always take \(\lambda = \alpha \pm i\beta \) where \(\beta > 0 \).

Follow the following steps.

1. Pick either \(\lambda = \alpha + i\beta \) or \(\lambda = \alpha - i\beta \) and stick with it! For purposes of illustration, assume we pick \(\lambda = \alpha + i\beta \).

2. For this choice of eigenvalue \(\lambda \), find an eigenvector \(V_c \) (with complex entries) corresponding to \(\lambda \).

3. Write
 \[
 Y_c(t) = e^{\lambda t} V_c = e^{(\alpha+i\beta)t} V_c = e^{\alpha t} (\cos (\beta t) + i \sin (\beta t)) (V_{re} + i V_{im})
 \]
 where both \(V_{re} \) and \(V_{im} \) have real entries. Continuing the calculation, write
 \[
 Y_c(t) = Y_{re}(t) + i Y_{im}(t)
 \]
 where \(Y_{re}(t) \) and \(Y_{im}(t) \) have real entries.

4. Then \(Y_{re}(t) \) and \(Y_{im}(t) \) are linearly independent real solutions of the system \(\frac{dY}{dt} = AY \). The general solution of this system is \(Y(t) = k_1 Y_{re}(t) + k_2 Y_{im}(t) \) where \(k_1 \) and \(k_2 \) are arbitrary constants.

Example: \(\frac{dY}{dt} = AY \) where \(A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \). The numbers below correspond to the numbered steps above.

1. The eigenvalues are solutions of
 \[
 0 = \det (A - \lambda I) = \det \begin{pmatrix} -\lambda & 1 \\ -1 & \lambda \end{pmatrix} = \lambda^2 + 1
 \]
 i.e., \(\lambda = \pm i \). So take \(\lambda = i \).

2. An complex eigenvector \(V_c \) corresponding to \(\lambda = i \) is computed as follows.
 \[
 \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -i & 1 \\ -1 & -i \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -ix + y \\ -y - ix \end{pmatrix}
 \]
 so \(y = ix \). Letting \(x = 1 \), we get \(y = i \) and so \(V_c = \begin{pmatrix} 1 \\ i \end{pmatrix} \).
3. A complex solution of this system is

\[Y_c(t) = e^{it} \begin{pmatrix} 1 \\ i \end{pmatrix} = (\cos(t) + i \sin(t)) \begin{pmatrix} 1 \\ 0 \end{pmatrix} + i \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]

\[= \begin{pmatrix} \cos(t) \\ -\sin(t) \end{pmatrix} + i \begin{pmatrix} \sin(t) \\ \cos(t) \end{pmatrix} \]

4. So, \(Y_{re}(t) = \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} \) and \(Y_{im}(t) = \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} \) are two linearly independent real solutions of the system. The general solution of this system is

\[Y(t) = k_1 \begin{pmatrix} \cos t \\ -\sin t \end{pmatrix} + k_2 \begin{pmatrix} \sin t \\ \cos t \end{pmatrix} \]

where \(k_1 \) and \(k_2 \) are arbitrary constants.

Problem:

Solve the initial value problem

\[\frac{dY}{dt} = BY, \quad Y(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \]

where \(B = \begin{pmatrix} 1 & 4 \\ -2 & 3 \end{pmatrix} \). Note that there is only a sign difference between the matrix \(B \) and the matrix \(A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \) which was assigned in the handout solving-systems-1.pdf and which has the title “Solving Linear Systems – Real, Distinct Eigenvalues.”