I'm just giving answers. No other information, such as solution method, is included here.

1. Solve 3 ways (1st order linear 2 ways, Laplace 1 way).
 (a) Solution: \(y(t) = 4 - 4e^{2t} \).
 (b) Solution: \(y(t) = -8te^{-t} \).

2. Solve the following IVPs. For parts (a), (b) and (c) determine how many times (if any) and when \(y(t) = 0 \) for \(t \geq 0 \).
 (a) Solution: \(y(t) = e^{-2t} + te^{-2t} \)
 (b) Solution: \(y(t) = (\cos t + \sin t) e^{-2t} \)
 (c) Solution: \(y(t) = e^{-t} \)
 (d) Solution: \(y(t) = 1 - t \)

3. Solution:
 \[
 y(t) = \frac{1}{3} (e^{-t} - e^{-4t}) + \frac{2}{3} u_1(t) (e^{-(t-1)} - e^{-4(t-1)}) + u_2(t) (e^{-(t-2)} - e^{-4(t-2)})
 \]
 Here’s the graph of the solution over the interval \([0, 6]\).
4. Solution:

\[y(t) = e^{-2t} + 2u_1(t) e^{-2(t-1)} + 3u_2(t) e^{-2(t-2)} \]

Here’s the graph of the solution over the interval [0, 4].

5. Solutions

(a) \[y(t) = \frac{1}{14(t^3 + 1)} (2t^7 + 7t^4 + 14t) \].

(b) \[y(t) = t^4 + t \].

(c) \[y(t) = 3(t^3 + 1)^{2/3} - 3 \].

6. Solution:

(a) If we let \(w(t) \) be the amount of salt in tank \(W \), etc., then the IVP is

\[
\begin{align*}
\frac{dw}{dt} &= -\frac{1}{8}w + x, \quad w(0) = 0 \\
\frac{dx}{dt} &= -x + \frac{2}{5}y + \frac{z}{20}, \quad x(0) = 15 \\
\frac{dy}{dt} &= -\frac{2}{5}y + \frac{1}{5}z, \quad y(0) = 0 \\
\frac{dz}{dt} &= \frac{1}{8}w - \frac{1}{4}z, \quad z(0) = 0
\end{align*}
\]

(b) Since there is twice as much liquid in tank \(Y \) than tank \(X \), twice as much liquid in \(Z \) than \(Y \), etc., this ratio will be preserved by the amount of salt in these tanks at equilibrium, giving

\[x = 1, \quad y = 2, \quad z = 4, \quad w = 8 \]