Admissible Orders of Jordan Loops

Michael Kinyon, Kyle Pula, & Petr Vojtěchovský

University of Denver
Denver, Colorado, USA

August 24th, 2007
A commutative loop or quasigroup is **Jordan** if it satisfies the following identity:

\[(x^2y)x = x^2(yx)\]

Goodaire & Keeping show that the loops rings of Jordan loops have certain “nice” properties.

Question

For which orders do non-associative Jordan loops exist?
Main Result

Theorem (Goodaire & Keeping)

NJLs exist for all even orders and for all orders $n \equiv 0 \mod 7$.

Theorem (Kinyon, Pula, & Vojtěchovský)

NJLs exist for all orders $n \geq 6$ and $n \neq 9$.
Main Technique: Amalgam Construction

Background:

- Construction originally appears in Bruck
- Name “Amalgam” comes from Foguel

Ingredients:

- \((G, \cdot)\) ... an idempotent quasigroup
- \((L, \ast)\) ... a loop
- \((Q, \bullet)\) ... a quasigroup with \(Q := L \setminus \{1\}\)
Main Technique: Amalgam Construction

Background:
- Construction originally appears in Bruck
- Name “Amalgam” comes from Foguel

Ingredients:
- \((G, \cdot)\) ... an idempotent quasigroup
- \((L, \ast)\) ... a loop
- \((Q, \bullet)\) ... a quasigroup with \(Q := L \setminus \{1\}\)
Build a multiplication on the set \((G \times Q) \cup \{1\}\) as follows:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>({f} \times Q)</th>
<th>({g} \times Q)</th>
<th>({h} \times Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>({f} \times Q)</td>
<td>((L,\ast))</td>
<td>((Q,\bullet))</td>
<td>((Q,\bullet))</td>
<td></td>
</tr>
<tr>
<td>({g} \times Q)</td>
<td>((Q,\bullet))</td>
<td>((L,\ast))</td>
<td>((Q,\bullet))</td>
<td></td>
</tr>
<tr>
<td>({h} \times Q)</td>
<td>((Q,\bullet))</td>
<td>((Q,\bullet))</td>
<td>((L,\ast))</td>
<td></td>
</tr>
</tbody>
</table>

- Let 1 be an identity.
- Place copies of \((Q,\bullet)\) in the off diagonal blocks.
- Place copies of \((L,\ast)\) in the main diagonal blocks.
 (with identity row and column removed)
Build a multiplication on the set \((G \times Q) \cup \{1\}\) as follows:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>{f} \times Q</th>
<th>{g} \times Q</th>
<th>{h} \times Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>{f} \times Q</td>
<td></td>
<td>(L, \ast)</td>
<td>(Q, \bullet)</td>
<td>(Q, \bullet)</td>
</tr>
<tr>
<td>{g} \times Q</td>
<td></td>
<td>(Q, \bullet)</td>
<td>(L, \ast)</td>
<td>(Q, \bullet)</td>
</tr>
<tr>
<td>{h} \times Q</td>
<td></td>
<td>(Q, \bullet)</td>
<td>(Q, \bullet)</td>
<td>(L, \ast)</td>
</tr>
</tbody>
</table>

- Let 1 be an identity.
- Place copies of \((Q, \bullet)\) in the off diagonal blocks.
- Place copies of \((L, \ast)\) in the main diagonal blocks.
 (with identity row and column removed)
Build a multiplication on the set \((G \times Q) \cup \{1\}\) as follows:

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>({f} \times Q)</th>
<th>({g} \times Q)</th>
<th>({h} \times Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td></td>
</tr>
<tr>
<td>({f} \times Q)</td>
<td>({g} \times Q)</td>
<td>({h} \times Q)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>({g} \times Q)</td>
<td>({h} \times Q)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>({h} \times Q)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Let 1 be an identity.
- Place copies of \((Q, \bullet)\) in the off diagonal blocks.
- Place copies of \((L, \ast)\) in the main diagonal blocks.
 (with identity row and column removed)
Example of Amalgam Construction

\[
\begin{array}{c|ccc}
(G, \cdot) & f & g & h \\
\hline
f & f & h & g \\
g & h & g & f \\
h & g & f & h \\
\end{array}
\quad
\begin{array}{c|ccc}
(L, \ast) & 1 & a & b \\
\hline
1 & 1 & a & b \\
a & a & b & 1 \\
b & b & 1 & a \\
\end{array}
\quad
\begin{array}{c|cc}
(Q, \circ) & a & b \\
\hline
a & a & b \\
b & b & a \\
\end{array}
\]

\begin{array}{c|cccccccc}
& 1 & (f, a) & (f, b) & (g, a) & (g, b) & (h, a) & (h, b) \\
\hline
1 & 1 & (f, a) & (f, b) & (g, a) & (g, b) & (h, a) & (h, b) \\
(f, a) & (f, a) & (f, b) & (f, 1) & (h, a) & (h, b) & (g, a) & (g, b) \\
(f, b) & (f, b) & (f, 1) & (f, a) & (h, b) & (h, a) & (g, b) & (g, a) \\
(g, a) & (g, a) & (h, a) & (h, b) & (g, b) & (g, 1) & (f, a) & (g, b) \\
(g, b) & (g, b) & (h, b) & (h, a) & (g, 1) & (g, a) & (f, b) & (g, a) \\
(h, a) & (h, a) & (g, a) & (g, b) & (f, a) & (f, b) & (h, b) & (h, 1) \\
(h, b) & (h, b) & (g, b) & (g, a) & (f, b) & (f, a) & (h, 1) & (h, a) \\
\end{array}
Example of Amalgam Construction

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>g</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
<td>h</td>
<td>g</td>
</tr>
<tr>
<td>g</td>
<td>h</td>
<td>g</td>
<td>f</td>
</tr>
<tr>
<td>h</td>
<td>g</td>
<td>f</td>
<td>h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>1</td>
<td>a</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q, \cdot)</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>(f, a)</th>
<th>(f, b)</th>
<th>(g, a)</th>
<th>(g, b)</th>
<th>(h, a)</th>
<th>(h, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>(f, a)</td>
<td>(f, b)</td>
<td>(g, a)</td>
<td>(g, b)</td>
<td>(h, a)</td>
<td>(h, b)</td>
</tr>
<tr>
<td>(f, a)</td>
<td>(f, a)</td>
<td>(f, b)</td>
<td>$(f, 1)$</td>
<td>(h, a)</td>
<td>(h, b)</td>
<td>(g, a)</td>
<td>(g, b)</td>
</tr>
<tr>
<td>(f, b)</td>
<td>(f, b)</td>
<td>$(f, 1)$</td>
<td>(f, a)</td>
<td>(h, b)</td>
<td>(h, a)</td>
<td>(g, b)</td>
<td>(g, a)</td>
</tr>
<tr>
<td>(g, a)</td>
<td>(g, a)</td>
<td>(h, a)</td>
<td>(h, b)</td>
<td>(g, b)</td>
<td>$(g, 1)$</td>
<td>(f, a)</td>
<td>(g, b)</td>
</tr>
<tr>
<td>(g, b)</td>
<td>(g, b)</td>
<td>(h, b)</td>
<td>(h, a)</td>
<td>$(g, 1)$</td>
<td>(g, a)</td>
<td>(f, b)</td>
<td>(g, a)</td>
</tr>
<tr>
<td>(h, a)</td>
<td>(h, a)</td>
<td>(g, a)</td>
<td>(g, b)</td>
<td>(f, a)</td>
<td>(f, b)</td>
<td>(h, b)</td>
<td>$(h, 1)$</td>
</tr>
<tr>
<td>(h, b)</td>
<td>(h, b)</td>
<td>(g, b)</td>
<td>(g, a)</td>
<td>(f, b)</td>
<td>(f, a)</td>
<td>$(h, 1)$</td>
<td>(h, a)</td>
</tr>
</tbody>
</table>
We write \(A(G, L, Q) \) for the resulting magma.

Lemma

\(A(G, L, Q) \) is a loop of order \(|G|(|L| - 1) + 1\).

It is a Jordan loop if and only if

1. \((L, \ast)\) is a Jordan loop,
2. \((G, \cdot)\) and \((Q, \circ)\) are commutative, and
3. for every \(s, t \in Q\) either \(s \ast s = 1\) or

\[(s \ast s) \circ (t \circ s) = ((s \ast s) \circ t) \circ s\]
We write $A(G, L, Q)$ for the resulting magma.

Lemma

$A(G, L, Q)$ is a loop of order $|G|(|L| - 1) + 1$.

It is a Jordan loop if and only if

1. (L, \ast) is a Jordan loop,
2. (G, \cdot) and (Q, \bullet) are commutative, and
3. for every $s, t \in Q$ either $s \ast s = 1$ or

 $$(s \ast s) \bullet (t \bullet s) = ((s \ast s) \bullet t) \bullet s$$
We write $\mathcal{A}(G, L, Q)$ for the resulting magma.

Lemma

$\mathcal{A}(G, L, Q)$ is a loop of order $|G|(|L| - 1) + 1$.

It is a Jordan loop if and only if

1. (L, \ast) is a Jordan loop,
2. (G, \cdot) and (Q, \bullet) are commutative, and
3. for every $s, t \in Q$ either $s \ast s = 1$ or

\[(s \ast s) \bullet (t \bullet s) = ((s \ast s) \bullet t) \bullet s\]
We write $A(G, L, Q)$ for the resulting magma.

Lemma

$A(G, L, Q)$ is a loop of order $|G|(|L| - 1) + 1$.

It is a Jordan loop if and only if

1. (L, \ast) is a Jordan loop,
2. (G, \cdot) and (Q, \bullet) are commutative, and
3. for every $s, t \in Q$ either $s \ast s = 1$ or

 $$(s \ast s) \bullet (t \bullet s) = ((s \ast s) \bullet t) \bullet s$$
Achievable orders using the Amalgam

Lemma

There exist NJLs of order $n \geq 6$ for each $n \neq 2^k + 1$.

Proof.

- $|G|$ must be odd. $|G| = 1$ is trivial. Rules out $n = 2^k + 1$.
- Otherwise, let (L, \ast) and (Q, \bullet) be groups.
- Resulting loop is not left-alternative, thus non-associative.
Achievable orders using the Amalgam

Lemma

There exist NJLs of order \(n \geq 6 \) for each \(n \neq 2^k + 1 \).

Proof.

- \(|G|\) must be odd. \(|G| = 1\) is trivial. Rules out \(n = 2^k + 1 \).
- Otherwise, let \((L, *)\) and \((Q, \bullet)\) be groups.
- Resulting loop is not left-alternative, thus non-associative.
Orders of the form $n = 2^k + 1$

Using the finite model builder Mace4:

- there does not exist a NJL of order 9,
- searched unsuccessfully for a week for order 17, and
- quickly finds examples for orders less and greater than 17.
Using the finite model builder Mace4:

- there does not exist a NJL of order 9,
- searched unsuccessfully for a week for order 17, and
- quickly finds examples for orders less and greater than 17.
Orders of the form $n = 2^k + 1$

Using the finite model builder Mace4:

- there does not exist a NJL of order 9,
- searched unsuccessfully for a week for order 17, and
- quickly finds examples for orders less and greater than 17.
Using additional theoretical knowledge about the possible structure of a Jordan loop of order 17, Mace4 found the following loop:

<p>| | | | | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>13</td>
<td>14</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>14</td>
<td>13</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>12</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>16</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>6</td>
<td>5</td>
<td>16</td>
<td>15</td>
<td>6</td>
<td>5</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>4</td>
<td>11</td>
<td>12</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>7</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>16</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>11</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>3</td>
<td>4</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>14</td>
<td>13</td>
<td>4</td>
<td>3</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>14</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>16</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>4</td>
<td>13</td>
<td>14</td>
<td>12</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>7</td>
<td>16</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>14</td>
<td>13</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>16</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>16</td>
<td>0</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>10</td>
<td>19</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>
Using additional theoretical knowledge about the possible structure of a Jordan loop of order 17, Mace4 found the following loop:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>9</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>14</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>7</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>8</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>0</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>14</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>16</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>3</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>7</td>
<td>16</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>14</td>
<td>6</td>
<td>5</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>15</td>
<td>11</td>
<td>12</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>12</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>2</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Michael Kinyon, Kyle Pula, & Petr Vojtěchovský

Admissible Orders of Jordan Loops
Step 1 Construct a Jordan quasigroup of order 2^k that is covered by sub-quasigroups of order 2^{k-2}.

Step 2 As before, extend to a loop of order $2^k + 1$ by replacing these sub-quasigroups with copies of a Jordan loop of order $2^{k-2} + 1$.

Step 3 Prove that the resulting loop is non-associative.

Fails to satisfy the Lagrange property except when $k < 3$ (i.e. $n = 5$ or 9).
Step 1 Construct a Jordan quasigroup of order 2^k that is covered by sub-quasigroups of order 2^{k-2}.

Step 2 As before, extend to a loop of order $2^k + 1$ by replacing these sub-quasigroups with copies of a Jordan loop of order $2^{k-2} + 1$.

Step 3 Prove that the resulting loop is non-associative.

Fails to satisfy the Lagrange property except when $k < 3$ (i.e. $n = 5$ or 9).
Step 1 Construct a Jordan quasigroup of order 2^k that is covered by sub-quasigroups of order 2^{k-2}.

Step 2 As before, extend to a loop of order $2^k + 1$ by replacing these sub-quasigroups with copies of a Jordan loop of order $2^{k-2} + 1$.

Step 3 Prove that the resulting loop is non-associative.

Fails to satisfy the Lagrange property except when $k < 3$ (i.e. $n = 5$ or 9).
Constructing NJLs of Order $2^k + 1$

Step 1 Construct a Jordan quasigroup of order 2^k that is covered by sub-quasigroups of order 2^{k-2}.

Step 2 As before, extend to a loop of order $2^k + 1$ by replacing these sub-quasigroups with copies of a Jordan loop of order $2^{k-2} + 1$.

Step 3 Prove that the resulting loop is non-associative.

Fails to satisfy the Lagrange property except when $k < 3$ (i.e. $n = 5$ or 9).
Theorem

There exist NJLs of order n for all $n \geq 6$ and $n \neq 9$.

Proof.

For $n \geq 6$ and $n \neq 9$, by construction.

For $n = 9$, consider two cases:

- L is cyclic. Show that it is power associative and thus \mathbb{Z}_9.
- L has exponent 3. Play Sudoku until you have $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Michael Kinyon, Kyle Pula, & Petr Vojtěchovský

Admissible Orders of Jordan Loops
Theorem

There exist NJLs of order n for all $n \geq 6$ and $n \neq 9$.

Proof.

For $n \geq 6$ and $n \neq 9$, by construction.

For $n = 9$, consider two cases:

- L is cyclic. Show that it is power associative and thus \mathbb{Z}_9.
- L has exponent 3. Play Sudoku until you have $\mathbb{Z}_3 \times \mathbb{Z}_3$.
Main Result

Theorem

There exist NJLs of order n for all $n \geq 6$ and $n \neq 9$.

Proof.

For $n \geq 6$ and $n \neq 9$, by construction.

For $n = 9$, consider two cases:

- L is cyclic. Show that it is power associative and thus \mathbb{Z}_9.
- L has exponent 3. Play Sudoku until you have $\mathbb{Z}_3 \times \mathbb{Z}_3$.
Theorem (Powers in Jordan loops)

In any Jordan Loop,
- $x^3, x^4, \text{ and } x^5$ are well defined.
- x^6 need not be well defined.
- If x^6 is well defined, then x^7 and x^8 are well defined but x^9 need not be.
- $x^2x^k = x^{2+k}$ and $x^4x^k = x^{4+k}$

Construction

There is an infinite family of simple non-associative Jordan loops of order $2^k - 1$.
Theorem (Powers in Jordan loops)

In any Jordan Loop,

- x^3, x^4, and x^5 are well defined.
- x^6 need not be well defined.
- If x^6 is well defined, then x^7 and x^8 are well defined but x^9 need not be.
- $x^2x^k = x^{2+k}$ and $x^4x^k = x^{4+k}$

Construction

There is an infinite family of simple non-associative Jordan loops of order $2^k - 1$.