Applications of High Dimensional Ellentuck spaces

Natasha Dobrinen
University of Denver

Spring Topology and Dynamics Conference, 2018

Research supported by NSF Grant DMS-1600781
BLAST Conference - 10 Year Anniversary

Boolean algebras
Lattices
Algebraic logic, universal Algebra
Set theory
Topology - general, point-free, set-theoretic

University of Denver
August 6 - 10, 2018

http://www.cs.du.edu/~wesfussn/blast
some travel/lodging support available
The **Ellentuck space** is the space $[\omega]^\omega$ with topology generated by basic open sets

$$[s, A] = \{ X \in [\omega]^\omega : s \subseteq X \subseteq A \},$$

where $s \in [\omega]^{<\omega}$ and $A \in [\omega]^\omega$.

Thm. (Ellentuck) The Ellentuck space is a topological Ramsey space: Given $\mathcal{X} \subseteq [\omega]^\omega$ with the property of Baire, for any basic open set $[s, A]$, there is a member $B \in [s, A]$ such that

$$\text{either } [s, B] \subseteq \mathcal{X} \text{ or else } [s, B] \cap \mathcal{X} = \emptyset.$$

Forcing with members of the Ellentuck space partially ordered by \subseteq^* adds a Ramsey ultrafilter.
Forcing Ultrafilters

$([\omega]^\omega, \subseteq^*)$ is forcing equivalent to $\mathcal{P}(\omega)/\text{Fin}$.

A natural extension of this Boolean algebra: $\mathcal{P}(\omega \times \omega)/\text{Fin} \otimes \text{Fin}$.

$X \in \text{Fin} \otimes \text{Fin}$ iff $X \subseteq \omega \times \omega$ and $\forall \infty n \in \omega$, $\{i \in \omega : (n, i) \in X\} \in \text{Fin}$.

$\mathcal{P}(\omega^2)/\text{Fin}^\otimes^2$ adds an ultrafilter \mathcal{U}_2, the next best thing to a p-point:

$\mathcal{U}_2 \rightarrow (\mathcal{U}_2)_{r,4}^2$.

The projection to the first coordinates, $\pi_1(\mathcal{U}_2)$, is a Ramsey ultrafilter, generic for $\pi_1(\mathcal{P}(\omega^2)/\text{Fin}^\otimes^2) \cong \mathcal{P}(\omega)/\text{Fin}$.
Extending $\text{Fin} \otimes^2$ to all uniform barriers

Recursively construct ideals on ω^{k+1}: $\text{Fin} \otimes^{k+1} = \text{Fin} \otimes \text{Fin} \otimes^k$.

$\mathcal{P}(\omega^k) / \text{Fin} \otimes^k$ forces an ultrafilter \mathcal{U}_k: for each $j < k$, $\pi_j(\mathcal{U}_k) \cong \mathcal{U}_j$.

Replace ω^k by $[\omega]^k$; $\text{Fin} \otimes^k$ by the ideal I_k on $[\omega]^k$ determined by $\text{Fin} \otimes^k$.

$\mathcal{P}([\omega]^k) / I_k \cong \mathcal{P}(\omega^k) / \text{Fin} \otimes^k$.

$[\omega]^k$ is a uniform barrier on ω of rank k.

This construction of I_k can be extended to all uniform barriers on ω.
Example. Schreier barrier: \(S = \{ s \in [\omega]^\omega : |s| = \text{min } s + 1 \} \).

For \(X \subseteq S \), \(X_n = \{ s \in X : \text{min } s = n \} \).

\[I_S = \{ X \subseteq S : \forall \omega \ (X_n \in I_S) \}. \]

For any uniform barrier \(B \) on \(\omega \), \(\mathcal{P}(B)/I_B \) forces an ultrafilter \(\mathcal{U}_B \) on countable base set \(B \).

Fact. If \(B \) projects to \(C \), then \(\mathcal{P}(C)/I_C \) embeds as a complete subalgebra of \(\mathcal{P}(B)/I_B \), and \(\mathcal{U}_C \) is isomorphic to a projection of \(\mathcal{U}_B \).
A function $f : \mathcal{U} \rightarrow \mathcal{V}$ between ultrafilters is **cofinal** if f maps each filter base for \mathcal{U} to a filter base for \mathcal{V}.

\mathcal{U} is **Tukey reducible** to $\mathcal{U} \geq_T \mathcal{V}$ iff there is a cofinal map from \mathcal{U} into \mathcal{V}.

The equivalence relation defined by $\mathcal{U} \equiv_T \mathcal{V}$ iff $\mathcal{U} \leq_T \mathcal{V}$ and $\mathcal{V} \leq_T \mathcal{U}$ is a coarsening of the Rudin-Keisler equivalence relation of isomorphism.

Thm.

1. (Folklore) The ultrafilter \mathcal{U}_2 forced by $\mathcal{P}(\omega^2)/\text{Fin} \otimes^2$ is Rudin-Keisler minimal above the Ramsey ultrafilter $\pi_1(\mathcal{U}_2)$.

2. (Blass, D., Raghavan) $\mathcal{U}_2 \geq_T \pi_1(\mathcal{U}_2)$ and \mathcal{U}_2 is not Tukey maximal.
Initial Tukey Structures

So what exactly is Tukey below \mathcal{U}_2?

Thm. [D1]
1. \mathcal{U}_2 is Tukey minimal above its projected Ramsey ultrafilter $\pi_1(\mathcal{U}_2)$.
2. For each $k \geq 2$, the ultrafilter \mathcal{U}_k forced by $\mathcal{P}(\omega^k)/\text{Fin}^\otimes k$ has initial Tukey structure exactly a chain of length k. Likewise for its initial Rudin-Keisler structure.
3. [D2 and unpublished] For each uniform barrier B of infinite rank, \mathcal{U}_B has initial Tukey and RK structures which are chains of length 2^ω, and they form a hierarchy via projection to barriers of smaller rank.

Remark. These results rely on new topological Ramsey spaces and canonization theorems for equivalence relations.
The 2-dimensional Ellentuck space E_2

Goal: Construct a topological Ramsey space dense in $(\text{Fin} \otimes \text{Fin})^+$.

Q. Which subsets of $(\text{Fin} \otimes \text{Fin})^+$ should we allow?

A. Fix a particular order \prec of the members of non-decreasing sequences of natural numbers of length 2 in order type ω so that each infinite set is the limit of its finite approximations.

E_2 consists of all subsets of W_2 for which the \prec-preserving bijection is also a tree-isomorphism.

Figure: W_2
A member of \mathcal{E}_2
The collection of $X \subseteq \mathbb{W}_2$ for which the \prec-preserving bijection from \mathbb{W}_2 to X preserves the tree structure induces the finite approximations. The basic open sets of \mathcal{E}_2 are of the form

$$[s, A] = \{ X \in \mathcal{E}_2 : s \sqsubseteq A \sqsubseteq X \}.$$

Thm. [D1] \mathcal{E}_2 satisfies the 4 axioms of Todorcevic, and hence is a topological Ramsey space: Every subset with the property of Baire is Ramsey.

That \mathcal{E}_2 is a topological Ramsey space was heavily utilized when proving the canonization theorem for equivalence relations on barriers on \mathcal{E}_2.

This was applied to show that the generic ultrafilter forced by $\mathcal{P}(\omega^2)/\text{Fin} \otimes 2$ has, up to cofinal equivalence, exactly one Tukey type below it, namely that of its projected Ramsey ultrafilter.
The 3-dimensional Ellentuck space \mathcal{E}_3

A member of \mathcal{E}_3
\mathcal{E}_S for S the Schreier barrier

$X \in \mathcal{E}_S$ only if $X \subseteq \mathbb{W}_S$, for each n for which X has non-empty intersection with the subtree above (n), that restriction of X is in \mathcal{E}_n, and more structural requirements which are defined recursively from the structural requirements for \mathcal{E}_k.

Figure: \mathbb{W}_S
Thm. [D2] For each uniform barrier B, there is a topological Ramsey space E_B which is dense in l_B^+. Hence, (E_B, \subseteq^I_B) is forcing equivalent to $\mathcal{P}(B)/I_B$.

Thus, the restriction of $\mathcal{P}(B)$ to E_B produces infinitary Ramsey theory, for those partitions into sets satisfying the property of Baire in the Ellentuck topology.

This was a necessary, though not sufficient, step in proving the initial Tukey structures below the ultrafilters U_B.
Other Applications of Extended Ellentuck Spaces
A hierarchy of new Banach spaces

In [Arias, D., Girón, Mijares], we constructed a new Banach spaces using the Tsirelson norm construction over fronts of finite rank on the \mathcal{E}_k spaces.

This forms a hierarchy of spaces over ℓ_p, with spaces formed from \mathcal{E}_k projecting (in many different ways) to spaces from \mathcal{E}_j, for $j < k$.

My motivation for this project was to shed new light on distortion problems. Much work still needs to be done in this direction.
Preservation of ultrafilters by Product Sacks Forcing

Thm. [Y.Y. Zheng] The ultrafilters forced by $\mathcal{P}(\omega^k)/\text{Fin} \otimes^k$ are preserved by products of Sacks forcing with countable support.

She first proved a *Moderately-Abstract Parametrized Ellentuck Theorem* for $\mathcal{R} \times \mathbb{R}^\omega$, for a large class of topological Ramsey spaces.

She then showed that \mathcal{E}_k spaces satisfy the premises of this parametrization theorem, which is applied to obtain the theorem above.
A Barren Extension

Thm. [Henle, Mathias, Woodin] Let M be a transitive model of $ZF + \omega \rightarrow (\omega)^{\omega}$ and N its Hausdorff extension, that is the extension $M[U]$ where U is the Ramsey ultrafilter forced by $\mathcal{P}(\omega)/\text{Fin}$. Then M and N have the same sets of ordinals; moreover, every sequence in N of elements of M lies in M.

In particular, this theorem holds when M is the Solovay model $L(\mathbb{R})$.
Thm. [D., Hathaway] Fix a uniform barrier B. Let M be a transitive model of $\text{ZF} + \text{every subset of } \mathcal{E}_B \text{ is Ramsey}$, and let $N = M[\mathcal{U}_B]$ be the generic extension obtained by forcing with $(\mathcal{E}_B, \subseteq^I_B)$. Then M and N have the same sets of ordinals; moreover, every sequence in N of elements of M lies in M.

Thus, there is a hierarchy of models $L(\mathbb{R})[\mathcal{U}_B]$ with stronger and stronger fragments of choice, in the form of containing an ultrafilter \mathcal{U}_B and all \mathcal{U}_C where C is a uniform barrier obtained by a projection of B, all of which are barren extensions of $L(\mathbb{R})$.

Boolean algebras
Lattices
Alegbraic logic, universal Algebra
Set theory
Topology - general, point-free, set-theoretic

University of Denver
August 6 - 10, 2018

http://www.cs.du.edu/~wesfussn/blast
some travel/lodging support available thanks to NSF funding

Come have a BLAST!