REPRESENTATIONS OF FINITE OSBORN LOOPS

A. O. Isere
Department of Mathematics
Ambrose Alli University, Ekpoma 310001, Nigeria.

J. O. Adéníran & A. A. A. Agboola
Department of Mathematics,
Federal University of Agriculture,
Abeokuta 110101, Nigeria.

3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013
Abstract

Introduction
Groupoids, Groups, Quasigroups And Loops
Osborn Loops

Preliminaries

Main Results
Representations of Osborn Loops of order 16

Acknowledgement

References
Abstract

It is shown that an Osborn loop of order n has $n/2$ generators. Given the generators such that $R(2)^2 = I$, the representation Π is generated by $R(2) \circ R(2 + i) = R(3 + i) \forall i = 1, 3, 5, ..., n - 3$. The representation of Osborn loops of order 16 is presented and it is used as an example to verify the results. It is also shown that the order of every element of the representation Π divides the order of the loop, hence, Osborn loops of order 16 are langrangelike.

Keywords: Osborn loops, Representation, order, generators, isomorphism
Abstract

Introduction
 Groupoids, Groups, Quasigroups And Loops
 Osborn Loops

Preliminaries

Main Results
 Representations of Osborn Loops of order 16

Acknowledgement

References
Abstract

Introduction

Groupoids, Groups, Quasigroups And Loops

Osborn Loops

Preliminaries

Main Results

Representations of Osborn Loops of order 16

Acknowledgement

References
A loop L is a quasigroup with a neutral element. All groups are loops but all loops are not groups. Those that are groups are called associative loops. Thus, loop theory is a generalization of group theory by introducing non-associativity into the set. However, we wish to formally define a loop.
Definition

A loop is a set G with binary operation (denoted here simply by juxtaposition) such that

- for each a in G, the left multiplication map $L_a : G \rightarrow G, x \rightarrow ax$ is bijective,
- for each a in G, the right multiplication map $R_a : G \rightarrow G, x \rightarrow xa$ is bijective; and
- G has a two-sided identity e.

The order of G is its cardinality $|G|$.

Definition

A loop \((G, \cdot, /, \backslash, e)\) is a set \(G\) together with three binary operations \((\cdot), (\slash), (\backslash)\) and one nullary operation \(e\) such that

(i) \(x \cdot (x \backslash y) = y,\) \((y / x) \cdot x = y\) for all \(x, y \in G,\)

(ii) \(x \backslash (x \cdot y) = y,\) \((y \cdot x) / x = y\) for all \(x, y \in G\) and

(iii) \(x \backslash x = y / y\) or \(e \cdot x = x\) and \(x \cdot e = x\) for all \(x, y \in G.\)
Definition

A loop \((G, \cdot, /, \backslash, e)\) is a set \(G\) together with three binary operations \((\cdot), (/), (\backslash)\) and one nullary operation \(e\) such that

\begin{align*}
 (i) \quad & x \cdot (x \backslash y) = y, \; (y / x) \cdot x = y \quad \text{for all } x, y \in G, \\
 (ii) \quad & x \backslash (x \cdot y) = y, \; (y \cdot x) / x = y \quad \text{for all } x, y \in G \quad \text{and} \\
 (iii) \quad & x \backslash x = y / y \quad \text{or} \quad e \cdot x = x \quad \text{and} \quad x \cdot e = x \quad \text{for all } x, y \in G.
\end{align*}

Definition

Let \(G\) be a loop. The set \(\Pi = \{R(a) : a \in G\}\) is called the right regular representation of \(G\) or briefly the representation of \(G\).
Definition

[2, 3] A set Π of permutations on a set G is the representation of a loop (G, \cdot) if and only if

(i) $I \in \Pi$ (identity mapping),

(ii) Π is transitive on G (i.e. for all $x, y \in G$, there exists a unique $\pi \in \Pi$ such that $x\pi = y$),

(iii) if $\alpha, \beta \in \Pi$ and $\alpha\beta^{-1}$ fixes one element of G, then $\alpha = \beta$.
Definition

[2, 3] A set Π of permutations on a set G is the representation of a loop (G, \cdot) if and only if

(i) $I \in \Pi$ (identity mapping),
(ii) Π is transitive on G (i.e. for all $x, y \in G$, there exists a unique $\pi \in \Pi$ such that $x\pi = y$),
(iii) if $\alpha, \beta \in \Pi$ and $\alpha\beta^{-1}$ fixes one element of G, then $\alpha = \beta$.

The left and right representation of a loop G is denoted by

$$\Pi_{\lambda}(G, \cdot) = \Pi_{\lambda}(G) \quad \text{and} \quad \Pi_{\rho}(G, \cdot) = \Pi_{\rho}(G)$$ respectively.
A loop \(I(\cdot) \) is called an Osborn loop if it obeys the identity:

\[
(x^\lambda \backslash y) \cdot zx = x(yz \cdot x)
\]

(1)

for all \(x, y, z \in I \). Here \(x^\lambda \) is the left inverse of \(x \), and \(a \backslash b \) is the left division operation.
Osborn Loops

A loop $I(\cdot)$ is called an Osborn loop if it obeys the identity:

$$(x^\lambda \backslash y) \cdot zx = x(yz \cdot x) \quad (1)$$

for all $x, y, z \in I$. Here x^λ is the left inverse of x, and $a \backslash b$ is the left division operation. The term Osborn loops first appeared in a work of Huthnance Jr [5] in 1968, on generalized Moufang loops. However, the equation (1) above is according to Basarab [5] in 1979[1]. For detail see Kinyon[5] and Jaiyeola[2].
Theorem

(Huthnance [5] and Basarab) Let G be an Osborn loop. $N_\rho(G) = N_\lambda(G) = N_\mu(G) = N(G)$ and $N(G) \triangleleft G$.

Lemma

Every Moufang loop is an Osborn loop.

Lemma

An Osborn loop that is flexible or which has the LAP or RAP or LIP or RIP or AAIP is a Moufang loop. But an Osborn loop that is commutative or which has the CIP is a commutative Moufang loop.

Remark

The theorem helps to determine a non-Moufang Osborn loop. Consider also [2, 3]
Theorem
(Huthnance [5] and Basarab) Let G be an Osborn loop. $N_{\rho}(G) = N_{\lambda}(G) = N_{\mu}(G) = N(G)$ and $N(G) \triangleleft G$.

Lemma
Every Moufang loop is an Osborn loop.
Theorem
(Huthnance [5] and Basarab) Let G be an Osborn loop. $N_{\rho}(G) = N_{\lambda}(G) = N_{\mu}(G) = N(G)$ and $N(G) \triangleleft G$.

Lemma
Every Moufang loop is an Osborn loop.

Lemma
An Osborn loop that is flexible or which has the LAP or RAP or LIP or RIP or AAIP is a Moufang loop. But an Osborn loop that is commutative or which has the CIP is a commutative Moufang loop.
Preliminaries

Theorem
(Huthnance [5] and Basarab) Let G be an Osborn loop. $N_\rho(G) = N_\lambda(G) = N_\mu(G) = N(G)$ and $N(G) \triangleleft G$.

Lemma
Every Moufang loop is an Osborn loop.

Lemma
An Osborn loop that is flexible or which has the LAP or RAP or LIP or RIP or AAIP is a Moufang loop. But an Osborn loop that is commutative or which has the CIP is a commutative Moufang loop.

Remark
The theorem helps to determine a non-Moufang Osborn loop. Consider also [2, 3].

A. O. Isere Department of Mathematics Ambrose Alli University J. O. Adéran & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria. 3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013

REPRESENTATIONS OF FINITE OSBORN LOOPS
Examples of Osborn Loops

Example

(Kinyon [5]) The smallest order for which proper (non-Moufang and non-CC) Osborn loops with non-trivial nucleus exists is 16. There are two of such loops.

- Each of the two is a G-loop.
- Each contains as a subgroup, the dihedral group D_4 of order 8.
- For each loop, the center coincides with the nucleus and has order 2. The quotient by the center is a non-associative CC-loop of order 8.
Example (cont’d)

- *The second center is* \(\mathbb{Z}_2 \times \mathbb{Z} \), *and the quotient is* \(\mathbb{Z}_4 \).
- *One loop satisfies* \(L^4_x = R^4_x = I \), *the other does not.*

Their multiplication tables are presented below in form of acceptable loops as Table 1 and Table 2.
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>15</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>

Table: The first Osborn loop of order 16 that is a G-loop
Table: The second Osborn loop of order 16 that is a G-loop

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>14</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>16</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>10</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>9</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
<td>13</td>
<td>14</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>14</td>
<td>13</td>
<td>16</td>
<td>15</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>14</td>
<td>16</td>
<td>15</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>13</td>
<td>15</td>
<td>16</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>16</td>
<td>14</td>
<td>13</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>
Table: The Smarandache Subgroup(D_4) of an Osborn loop
Table: The first latin sub-square of length 8 from the first and second Osborn loops
Table: The second latin sub-square of length 8 from the first and second Osborn loops
Example

(Isere et al[1])

Let \(I(\cdot) = C_{2n} \times C_2 \) that is

\[I = \{ (x^\alpha, y^\beta), 0 \leq \alpha \leq 2n - 1, 0 \leq \beta \leq 1 \} \]

and the binary operation is defined as follows:

\[
(x^a, e) \cdot (x^b, y^\beta) = (x^{a+b}, y^\beta) \tag{2}
\]

\[
(x^a, y^\alpha) \cdot (x^b, e) = (x^{a+b}, y^\alpha) \tag{3}
\]

\[
(x^a, y^\alpha) \cdot (x^b, y^\beta) = (x^{a+b}, y^{\alpha+\beta}) \text{ if } b \equiv 0(\text{mod } 2) \tag{4}
\]
Example cont’d

\[\begin{align*}
(x, y^\alpha) & \cdot (x^b, y^\beta) = (x^{a+3b}, y^{\alpha+3\beta}) \quad \text{if } b \equiv 1 (\text{mod } 2) \\
(x, y^\alpha) & \cdot (x^b, y^\beta) = (x^{a+b+c}, y^{\alpha+\beta}) \quad \text{if } a \equiv 1 (\text{mod } 2), b \equiv 1 (\text{mod } 2) \\
(x^{b+c}, y^\delta) & \cdot (x, y^\alpha) = (x^{a+b+c}, y^{\alpha+\delta}) \quad \text{if } b \equiv 0 (\text{mod } 2) \\
(x^{b+c}, y^\delta) & \cdot (x, y^\alpha) = (x^{a+3b+c}, y^{\alpha+\delta}) \quad \text{if } b \equiv 1 (\text{mod } 2) \\
(x^{b+c}, y^{\beta+\gamma}) & \cdot (x, y^\alpha) = (x^{3a+3b+c}, y^{\alpha+3\beta+\gamma}) \quad \text{if } a \equiv 1 (\text{mod } 2), b \equiv 1 (\text{mod } 2)
\end{align*} \]

Then \(I(\cdot) \) is an Osborn loop of order \(4n \), where \(n = 2, 3, 4, 6, 9, 12 \) and 18
Example

(Isere et al[1])

Let $I(\cdot) = C_{2n} \times C_2$ that is

$I = \{(x^\alpha, y^\beta), 0 \leq \alpha \leq 2n - 1, 0 \leq \beta \leq 1\}$ and the binary operation is defined as follows:

\[(x^a, e) \cdot (x^b, y^\beta) = (x^{a+b}, y^\beta) \] (10)

\[(x^a, y^\alpha) \cdot (x^b, e) = (x^{a+b}, y^\alpha) \] (11)

\[(x^a, y^\alpha) \cdot (x^b, y^\beta) = (x^{a+b}, y^{\alpha+\beta}) \text{ if } b \equiv 0(\text{mod } 2) \] (12)
Example

cont’d

\[(x^a, y^\alpha + \beta) \text{ if } a \equiv 0(\text{mod } 2), b \equiv 1(\text{mod } 2) \quad (13) \]

\[(x^a, y^\alpha) \cdot (x^b, y^\beta) = (x^{a+kb}, y^{\alpha+k\beta}) \text{ if } a \equiv 1(\text{mod } 2), b \equiv 1(\text{mod } 2) \quad (14) \]

\[(x^{b+c}, y^\delta) \cdot (x^a, y^\alpha) = (x^{a+b+c}, y^{\alpha+\delta}) \text{ if } a \equiv 0(\text{mod } 2), b \equiv 0(\text{mod } 2) \quad (15) \]

\[(x^{b+c}, y^\delta) \cdot (x^a, y^\alpha) = (x^{a+kb+c}, y^{\alpha+\delta}) \text{ if } a \equiv 0(\text{mod } 2), b \equiv 1(\text{mod } 2) \quad (16) \]

\[(x^{b+c}, y^{\beta+\gamma}) \cdot (x^a, y^\alpha) = (x^{b+c+ka}, y^{\beta+\gamma+k\alpha}) \text{ if } a \equiv 1(\text{mod } 2), b \equiv 0(\text{mod } 2) \quad (17) \]

\[(x^{b+c}, y^{\beta+\gamma}) \cdot (x^a, y^\alpha) = (x^{c+ka+k\beta}, y^{\alpha+k\beta+\gamma}) \text{ if } a \equiv 1(\text{mod } 2), b \equiv 1(\text{mod } 2) \quad (18) \]

Then \(I(\cdot) \) is an Osborn loop of order \(4n \), where...
Main Results

Theorem

Let Π be the right regular representation of an Osborn loop of order 16. Then, the element $R(2)$ and other elements of odd numbers greater than 2 ($R(3), R(5), \ldots, R(15)$) that are between 1 and 16 generate the loop.
Proof:
Consider an Osborn loop of order 16 represented by Π. Suppose $R(2) \in \Pi$ is given and suppose other elements of odd numbers greater than 2 that are between 1 and 16 ($R(3), R(5), R(7), R(9), R(11), R(13)$ and $R(15)$) are also given.
Proof:
Consider an Osborn loop of order 16 represented by Π. Suppose $R(2) \in \Pi$ is given and suppose other elements of odd numbers greater than 2 that are between 1 and 16 ($R(3), R(5), R(7), R(9), R(11), R(13)$ and $R(15)$) are also given. Then the other elements are generated as follows:

$$R(2)^2 = R(3)^2 = R(1) = I$$
$R(4) = R(2) \circ R(3)$
\[R(4) = R(2) \circ R(3) \]
\[R(6) = R(2) \circ R(5) \]
Representations of Osborn Loops of order 16

\[R(4) = R(2) \circ R(3) \]

\[R(6) = R(2) \circ R(5) \]

\[R(8) = R(2) \circ R(7) \]
Representations of Osborn Loops of order 16

\[R(4) = R(2) \circ R(3) \]

\[R(6) = R(2) \circ R(5) \]

\[R(8) = R(2) \circ R(7) \]

\[R(10) = R(2) \circ R(9) \]
\[R(4) = R(2) \circ R(3) \]
\[R(6) = R(2) \circ R(5) \]
\[R(8) = R(2) \circ R(7) \]
\[R(10) = R(2) \circ R(9) \]
\[R(12) = R(2) \circ R(11) \]
Representations of Osborn Loops of order 16

\[R(4) = R(2) \circ R(3) \]
\[R(6) = R(2) \circ R(5) \]
\[R(8) = R(2) \circ R(7) \]
\[R(10) = R(2) \circ R(9) \]
\[R(12) = R(2) \circ R(11) \]
\[R(14) = R(2) \circ R(13) \]

Thus, \(R(1), R(2), \ldots, R(16) \) is an Osborn loop of order 16.

Remark

Thus \(R(2), R(3), R(5), R(7), R(9), R(11), R(13) \) and \(R(15) \) are the generators of Osborn loops of order 16.
Representations of Osborn Loops of order 16

\[R(4) = R(2) \circ R(3) \]

\[R(6) = R(2) \circ R(5) \]

\[R(8) = R(2) \circ R(7) \]

\[R(10) = R(2) \circ R(9) \]

\[R(12) = R(2) \circ R(11) \]

\[R(14) = R(2) \circ R(13) \]

\[R(16) = R(2) \circ R(14) \]
$R(4) = R(2) \circ R(3)$

$R(6) = R(2) \circ R(5)$

$R(8) = R(2) \circ R(7)$

$R(10) = R(2) \circ R(9)$

$R(12) = R(2) \circ R(11)$

$R(14) = R(2) \circ R(13)$

$R(16) = R(2) \circ R(14)$
Corollary

Let Π be the representation of an Osborn loop of order 16, and a transposition permutation $R(2) \in \Pi$ such that $R(2)^2 = I$. Then, given the generators in Π,

\[R(2) \circ R(2+i) = R(3+i) \quad \forall i = 1, 3, 5, \ldots, 13, \]

and $R(2+i)$ determines the structure and order of $R(3+i)$.

Remark

If the given generators are of even numbers then the equation becomes $R(2) \circ R(2+i) = R(1+i) \quad \forall i = 0, 2, 4, \ldots, 14$.

A. O. Isere Department of Mathematics Ambrose Alli University, Ekpoma 310001, Nigeria.
J. O. Adéniyé & A. A. A. Agboola Department of Mathematics, Federal University of Agriculture, Abeokuta 110101, Nigeria.

3rd Mile High Conference on nonassociative mathematics, August 11-17, 2013
Corollary

Let Π be the representation of an Osborn loop of order 16, and a transposition permutation $R(2) \in \Pi$ such that $R(2)^2 = I$. Then, given the generators in Π, others are generated by:

$$R(2) \circ R(2 + i) = R(3 + i) \quad \forall \ i = 1, 3, 5, ..., 13, \text{ and } R(2 + i)$$

determines the structure and order of $R(3 + i)$.

Corollary

Let Π be the representation of an Osborn loop of order 16, and a transposition permutation $R(2) \in \Pi$ such that $R(2)^2 = I$. Then, given the generators in Π, others are generated by:

$$R(2) \circ R(2 + i) = R(3 + i) \forall i = 1, 3, 5, ..., 13.$$ and $R(2 + i)$ determines the structure and order of $R(3 + i)$. i.e. $R(3 + i)$ retains the structure and order of $R(2 + i)$ where $i = 1, 3, 5, .., 13.$
Corollary

Let Π be the representation of an Osborn loop of order 16, and a transposition permutation $R(2) \in \Pi$ such that $R(2)^2 = I$. Then, given the generators in Π, others are generated by:

$$R(2) \circ R(2 + i) = R(3 + i) \quad \forall \ i = 1, 3, 5, ..., 13., \text{ and } R(2 + i) \text{ determines the structure and order of } R(3 + i). \ i.e. \ R(3 + i) \text{ retains the structure and order of } R(2 + i) \text{ where } i = 1, 3, 5, .., 13.$$

Remark

If the given generators are of even numbers then the equation becomes $R(2) \circ R(2 + i) = R(1 + i) \quad \forall \ i = 0, 2, 4, ..., 14.$
Proof:
When $i = 1$, the equation becomes
Proof:
When $i = 1$, the equation becomes

$$R(2) \circ R(3) = R(4)$$
Proof:
When $i = 1$, the equation becomes

$$R(2) \circ R(3) = R(4)$$

when $i = 3$, we have

$$R(2) \circ R(5) = R(6)$$
Proof:
When $i = 1$, the equation becomes

\[R(2) \circ R(3) = R(4) \]

when $i = 3$, we have

\[R(2) \circ R(5) = R(6) \]

when $i = 5$, we have

\[R(2) \circ R(7) = R(8) \]
Proof:
When $i = 1$, the equation becomes

$$R(2) \circ R(3) = R(4)$$

when $i = 3$, we have

$$R(2) \circ R(5) = R(6)$$

when $i = 5$, we have

$$R(2) \circ R(7) = R(8)$$

continuing in this way up to $i = 13$,
Proof:
When $i = 1$, the equation becomes

$$R(2) \circ R(3) = R(4)$$

when $i = 3$, we have

$$R(2) \circ R(5) = R(6)$$

when $i = 5$, we have

$$R(2) \circ R(7) = R(8)$$

continuing in this way up to $i = 13$, we have:

$$R(2) \circ R(15) = R(16)$$

The composition follows from the theorem above. Hence, the proof.
Example

Given the following:

\[R(2) = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16) \]
\[R(3) = (1, 3)(2, 4)(5, 8)(6, 7)(9, 11)(10, 12)(13, 16)(14, 15) \]
\[R(5) = (1, 5)(2, 6)(3, 7)(4, 8)(9, 15, 10, 16)(11, 13, 12, 14) \]
\[R(7) = (1, 7, 2, 8)(3, 5, 4, 6)(9, 13)(10, 14)(11, 15)(12, 16) \]
\[R(9) = (1, 9, 7, 15, 2, 10, 8, 16)(3, 11, 6, 14, 4, 12, 5, 13) \]
Example

cont’d

\[R(11) = (1, 11, 8, 13, 2, 12, 7, 14)(3, 9, 5, 16, 4, 10, 6, 15) \]

\[R(13) = (1, 13, 6, 9, 2, 14, 5, 10)(3, 15, 7, 12, 4, 16, 8, 11) \]

\[R(15) = (1, 15, 6, 12, 2, 16, 5, 11)(3, 13, 7, 9, 4, 14, 8, 10) \]

determine an Osborn loop of order 16
Solution

Using the Corollary above, we obtained the following permutations
Solution

Using the Corollary above, we obtained the following permutations

\[R(1) = R(2)^2 = I \]
Solution

Using the Corollary above, we obtained the following permutations

\[R(1) = R(2)^2 = I \]

\[R(4) = (1, 4)(2, 3)(5, 7)(8, 6)(9, 12)(10, 11)(13, 15)(14, 16) \]
Solution

Using the Corollary above, we obtained the following permutations

\[R(1) = R(2)^2 = I \]

\[R(4) = (1, 4)(2, 3)(5, 7)(8, 6)(9, 12)(10, 11)(13, 15)(14, 16) \]

\[R(6) = (1, 6)(2, 5)(3, 8)(4, 7)(9, 16, 10, 15)(11, 14, 12, 13) \]
Solution

Using the Corollary above, we obtained the following permutations

\[R(1) = R(2)^2 = I \]

\[R(4) = (1, 4)(2, 3)(5, 7)(8, 6)(9, 12)(10, 11)(13, 15)(14, 16) \]

\[R(6) = (1, 6)(2, 5)(3, 8)(4, 7)(9, 16, 10, 15)(11, 14, 12, 13) \]

\[R(8) = (1, 8, 2, 7)(3, 6, 4, 5)(9, 14)(10, 13)(11, 16)(12, 15) \]
Solution

Using the Corollary above, we obtained the following permutations

\[R(1) = R(2)^2 = I \]

\[R(4) = (1, 4)(2, 3)(5, 7)(8, 6)(9, 12)(10, 11)(13, 15)(14, 16) \]

\[R(6) = (1, 6)(2, 5)(3, 8)(4, 7)(9, 16, 10, 15)(11, 14, 12, 13) \]

\[R(8) = (1, 8, 2, 7)(3, 6, 4, 5)(9, 14)(10, 13)(11, 16)(12, 15) \]

\[R(10) = (1, 10, 7, 16, 2, 9, 8, 15)(3, 12, 6, 13, 4, 11, 5, 14) \]
Solution

\[R(12) = (1, 12, 8, 14, 2, 11, 7, 13)(3, 10, 5, 15, 4, 9, 6, 16) \]
Solution

\[R(12) = (1, 12, 8, 14, 2, 11, 7, 13)(3, 10, 5, 15, 4, 9, 6, 16) \]

\[R(14) = (1, 14, 6, 10, 2, 13, 5, 9)(3, 16, 7, 11, 4, 15, 8, 12) \]

\[R(16) = (1, 16, 6, 11, 2, 15, 5, 12)(3, 14, 7, 10, 4, 13, 8, 9) \]

Thus, \(R(1), \ldots, R(16) \) is an Osborn loop of order 16
Corollary

Let \(\Pi \) be the representation of an Osborn loop of order 16, and \(R(2) \) a transposition permutation in \(\Pi \). Given the generators in \(\Pi \), others are generated by \(\langle R(2), R(2 + i) \rangle \) where \(i \) is either an even or odd number depending on whether the given generators are of either even or odd number.
Proof:
Obviously, as $i = 1, 3, 5, \ldots, 13$, the generators are given, and the proof follows from the theorem and corollary above.
Proof:
Obviously, as $i = 1, 3, 5, \ldots, 13$, the generators are given, and the proof follows from the theorem and corollary above.

Remark

For Osborn loops of order n, given the generators, others will be generated by $< R(2), R(2 + i) > \quad \forall \ i = 1, 3, \ldots, n - 3$ or $i = 0, 2, \ldots, n - 2$ depending on the given generators.
Corollary

If Π is the representation of an Osborn loop of order n, Π has $n/2$ generators.
Corollary

If Π is the representation of an Osborn loop of order n, Π has $n/2$ generators.

Proof:
Given $R(2)$ in Π, the odd numbers between 1 and n that are greater than 2 will be $(n-2)/2$ (i.e. n less 1 and 2).
Corollary

If Π is the representation of an Osborn loop of order n, Π has $n/2$ generators.

Proof:
Given $R(2)$ in Π, the odd numbers between 1 and n that are greater than 2 will be $(n - 2)/2$ (i.e. n less 1 and 2). Then adding that of $R(2)$ to this number gives $(n - 2)/2 + 1 = n/2$ implies $1/2(n)$ generators.
Corollary

If Π is the representation of an Osborn loop of order n, Π has $n/2$ generators.

Proof:
Given $R(2)$ in Π, the odd numbers between 1 and n that are greater than 2 will be $(n - 2)/2$ (i.e. n less 1 and 2). Then adding that of $R(2)$ to this number gives $(n - 2)/2 + 1 = n/2$ implies $1/2(n)$ generators.
We need to show by induction that it is true for all values of n.
Suppose $n = 16$, then by the theorem above, there are 8 generators, which implies $1/2(16) = 16/2$. So it is true for $n = 16$.
Suppose $n = 16$, then by the theorem above, there are 8 generators, which implies $1/2(16) = 16/2$. So it is true for $n = 16$. Suppose $n = k$, then we would have $k/2$, implies $1/2(k)$. So, it is true for $n = k$.

Suppose \(n = 16 \), then by the theorem above, there are 8 generators, which implies \(1/2(16) = 16/2 \). So it is true for \(n = 16 \). Suppose \(n = k \), then we would have \(k/2 \), implies \(1/2(k) \). So, it is true for \(n = k \).

Suppose \(n = k + 1 \), then, we have

\[
\frac{k + 1}{2} = \frac{k}{2} + \frac{1}{2} = \frac{1}{2}(k + 1).
\]

So, it is true for \(n = k + 1 \).
Suppose $n = 16$, then by the theorem above, there are 8 generators, which implies $1/2(16) = 16/2$. So it is true for $n = 16$. Suppose $n = k$, then we would have $k/2$, implies $1/2(k)$. So, it is true for $n = k$. Suppose $n = k + 1$, then, we have

$$(k + 1)/2 = k/2 + 1/2 = 1/2(k + 1).$$

So, it is true for $n = k + 1$. Inductively, it is true for all values of n. The proof is complete.
Theorem

Let Π be the representation of an Osborn loop of order 16. Every permutation in Π has no distinct inverse.
Theorem

Let Π be the representation of an Osborn loop of order 16. Every permutation in Π has no distinct inverse.

Proof:
Considering the Osborn loops generated in the example above (the only two examples at that order). We observe that they have no distinct inverses.
Theorem

Let Π be the representation of an Osborn loop of order 16. Every permutation in Π has no distinct inverse.

Proof:
Considering the Osborn loops generated in the example above (the only two examples at that order). We observe that they have no distinct inverses.

Corollary

The representation of a finite Osborn loop do not generate a multiplicative group.
Theorem

Let Π be the representation of an Osborn loop of order 16. Every permutation in Π has no distinct inverse.

Proof:
Considering the Osborn loops generated in the example above (the only two examples at that order). We observe that they have no distinct inverses.

Corollary

The representation of a finite Osborn loop do not generate a multiplicative group.

The proof follows from the above theorem.

Remark

The above Corollary is confirmed by LOOPS Package in GAP [4].
Lemma

Let Π be the representation of an Osborn loop of order 16. The order of every element of the representation Π divides the order of the loop.
Lemma

Let Π be the representation of an Osborn loop of order 16. The order of every element of the representation Π divides the order of the loop.

Proof:

The order of elements of the first example of Osborn loop of order 16 are 2 and 4 while the order of elements of the second example are 2, 4 and 8 respectively. These are divisors of 16. The proof follows.
Summary

This work divides the search space of an Osborn loop by 2. One only need to generate the generators by any means and using the equation in the corollary above one can get the entire loop.
The first author wishes to express his profound gratitude and appreciation to the Management of Education Trust Found Academic Staff Training and Development-2009(ETF AST and D) for the grant given him to carry out this Research, as well as, to the management of Ambrose Alli University, Nigeria for her joint support of the grant.
Abstract

Introduction
Groupoids, Groups, Quasigroups And Loops
Osborn Loops

Preliminaries

Main Results
Representations of Osborn Loops of order 16

Acknowledgement

References

GAP-Groups Algorithms and Programmes. R. Naggy and Vojtechovsky.

