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ABSTRACT
A standard assumption of search in two-player games is that the
opponent has the same evaluation function or utility for possible
game outcomes. While some work has been done to try to bet-
ter exploit weak opponents, it has only been a minor component
of high-performance game playing programs such as Chinook or
Deep Blue. However, we demonstrate that in games with more
than two players, opponent modeling is a necessary component for
ensuring high-quality play against unknown opponents. Thus, we
propose a new algorithm, soft-maxn, which can help accommo-
date differences in opponent styles. Finally, we show an inference
mechanism that can be used with soft-maxn to infer the playing
style of our opponents.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence ]: Learning; I.2.1 [Artificial Intelli-
gence]: Applications and Expert Systems—Games

General Terms
Algorithms

Keywords
multi-player games, search, opponent modeling

1. INTRODUCTION AND BACKGROUND
The minimax decision rule is well-known for its performance

guarantees in perfect-information game trees. If we have a perfect
evaluation function, minimax gives a lower-bound guarantee on our
score, regardless of our opponent. This is different than being max-
imally exploitive, however, because minimax will not necessarily
take maximal advantage of a weak opponent.

In two-player zero-sum games, different algorithms have been
suggested with the intent of using opponent modeling to take better
advantage of opponent weaknesses [2, 3, 7]. While these algo-
rithms work in theory, they require ana priori model of the oppo-
nent, and the improvement does not offset the loss of deeper search
afforded by alpha-beta pruning in two-player games.
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In games with more than two players or teams of players we face
a different situation. Game theory does not provide tight lower-
bounds on performance in multi-player1 games as in two-player
zero-sum games, and existing algorithms for play demonstrate great
weaknesses when playing new or unmodeled opponents. And, while
better pruning techniques have recently been developed [14, 15],
they are still not as effective as alpha-beta in two-player games.

This paper examines the role of opponent models for search in
large multi-player perfect-information game trees. We make two
novel contributions: a more robust algorithm for playingn-player
games and a representation and method of inferring opponent pref-
erences in these games.

This paper proceeds as follows: we will first discuss previous
algorithms for opponent modeling in more detail, as well as the
maxn algorithm [10] for playing multi-player games. We will then
introduce a sample domain, the card game Spades, and demonstrate
that an incorrect opponent model, such as assuming the opponent
is using the same evaluation function, can be quite harmful. We
introduce a new algorithm, soft-maxn, which can better accommo-
date differences in opponent styles. Finally, given this algorithm,
we show how we can infer models of our opponents through obser-
vations of their play.

1.1 Related Work
Opponent modeling has been studied in the context of two-player,

zero-sum, deterministic, perfect-information games for many years.
Some of the earliest work on opponent modeling [8, 6] began with
the recursive problem of opponent modeling. If I do not assume
that my opponent is identical to me, I must have a model of my
opponent. Similarly, if my opponent is also trying to model me, I
will also need a model of my opponent’s model of me, and so on.
At first glance this seems to be a recursive nightmare. But, algo-
rithms like M* [2] are capable of handling a number of opponent
models and using them recursively. PrOM [3] expanded on these
ideas, but still did not find measurably large success, even given a
perfect opponent model to begin with.

In some sense, because most of this work is in the context of
two-player, zero-sum games, it is not surprising that it has met with
limited success in practice. This is the domain with the strongest
theoretical algorithm, minimax, and thus has the least need for op-
ponent modeling. We demonstrate here that in multi-player games
there is a need for good opponent modeling. This same observa-
tion has been made in the context of poker [1, 13], although the
approach in that game has been to model the opponent’s strategy

1We use the phrasemulti-player to specifically refer to situations
with three or more players, as distinguished from the phrasetwo-
player, although most of our statements with regard to multi-player
games also apply to two-player non-zero-sum games.
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Figure 1: Example maxn tree.

rather than their evaluation function. In many cases the number
of outcomes to be ordered is small compared to the domain’s state
space, making modeling of preferences more tractable.

1.2 Maxn

The maxn algorithm is used for calculating plays in perfect in-
formation game trees. In a maxn tree withn players, the leaves of
the tree aren-tuples, where theith element in the tuple is theith
player’s score or utility for that position. At the interior nodes in
the game tree, the maxn value of a node where playeri is to move
is the maxn value of the child of that node for which theith compo-
nent is maximum. Ties are traditionally broken toward the left, to
maximize pruning. At the leaves of a game tree an exact or heuris-
tic evaluation function can be applied to calculate then-tuples that
are backed up in the game tree.

We demonstrate this in Figure 1. In this tree there are three play-
ers. The player to move is labeled inside each node. At node (a),
Player 2 is to move. Player 2 can get a score of 3 by moving to
the left, and a score of 1 by moving to the right. So, Player 2 will
choose the left branch, and the maxn value of node (a) is (1, 3, 5).
Player 2 acts similarly at node (b) selecting the right branch, and at
node (c) breaks the tie to the left, selecting the left branch. At node
the root of the tree, Player 1 chooses the move at node (c), because
6 is greater than the 1 or 3 available at nodes (a) and (b).

1.3 Maxn Theoretical Properties
In order to better motivate the theoretical reasoning for our work,

we briefly touch on one aspect of the game theory behind the mini-
max and maxn algorithms. The minimax algorithm works by com-
puting the best response to any strategy a perfect opponent could
play. The value of this strategy is called the minimax value or an
equilibrium value. While there may be many strategies that allow
a player to achieve this value in a two-player zero-sum game, each
of these strategies has the same value.

Maxn calculates equilibrium values and strategies similar to min-
imax. It is simple to see that maxn returns a line of play which is an
equilibrium, because at each point in the game tree players are al-
ways taking the move with the maximum score possible. Thus, no
player can get a better result by unilaterally changing their strategy.
See [10] for a full proof.

In a multi-player game there can be many different equilibrium
strategies, but unlike in two-player zero-sum games, they are not
guaranteed to all have the same value. Even more importantly, if
your opponent is playing a different equilibrium strategy than you
are, there is no guarantee that you will be in equilibrium, or that you
will even receive the minimum equilibrium value that you expected
to receive.2

2We could get a guaranteed lower bound on our score by reducing
then-player game to a two-player game, assuming all of our oppo-

Even in two-player games there are cases where there is a need to
distinguish between different strategies with the same equilibrium
value. Perhaps the biggest example is from the game of Checkers.
In one situation the program CHINOOK was able to prove that a
line of play was a draw, when humans mistakenly thought it was
a win for the computer. Thus, it appeared to be a bug when CHI-
NOOK made a move that led to a clear draw. In practice CHINOOK

just lacked the ability to select between different equilibrium strate-
gies to choose the one that was most likely to lead to an opponent
mistake [12].

In the case of Checkers, the result of playing the minimax strat-
egy without attention to an opponent model simply means that the
program isn’t maximally exploiting a weak opponent. Against a
perfect opponent such differences don’t matter. However, the con-
cept of a perfect opponent in a multi-player game is ill-defined.
In the next section we demonstrate the effects of playing a multi-
player game when we have incorrect assumptions or models about
our opponents’ strategies.

2. SPADES
Most of the work in this paper is not specific to any particular

game. But, because the game of Spades is well-known, and it is
easy to create small, concrete examples from this game, we will
use it as the primary domain for examples and experiments. There
are many games similar to Spades which have similar properties,
which we will not cover here, including Oh Hell! and Sergeant
Major. The complete rules of Spades is found in [4], but many
more games are described in detail at http://www.pagat.com/.

Spades is a card game for two or more players. In the 4-player
version players play in teams, while in the 3-player version each
player is on their own, which is what we focus on. We will only
cover a subset of the rules of Spades here. A game is split into
many hands. Within each hand the basic unit of play is a trick. At
the beginning of a hand, players must bid how many tricks they
think they can take in that hand. At the end of each hand they
receive a score based on how many tricks they actually took. The
goal of the game is to be the first player to reach a pre-determined
cumulative score, often 300.

If players make their bid exactly, they receive a score of10×bid.
Any tricks taken over their bid are called overtricks. If a player
takes any overtricks they count for 1 point each, but each time a
player accumulate 10 overtricks, they lose 100 points. Finally, if a
player misses their bid, they lose10 × bid. So, if a player bids 3
and takes 3, they get 30 points. If they bid 3 and take 5, they get 32
points. If they bid 3 and take 2, they get−30 points. Thus, the goal
of the game is to make your bid without taking too many overtricks.
In this work we consider the perfect-information version of Spades
where we can see our opponents cards.

The perfect-information version of Spades is a complex and chal-
lenging problem in itself. If we wish to play the imperfect-information
version of Spades, Monte-Carlo sampling can be used to turn a
perfect-information player into a imperfect-information player, such
as was done in Bridge [5].

To demonstrate the effect opponent modeling has on quality of
play, we consider two player types, one player who tries to max-
imize the number of tricks they take in a hand (ignoring the bid),
which we call MT. The other player type we consider attempts to
minimize the number of overtricks they take, which we call mOT.
Then, we varied these players by either giving them a model of

nents are seeking to minimize our score. This approach is overly
pessimistic, assuming that not only will opponents arbitrarily sacri-
fice their own score to reduce ours, but are also entirely coordinated
in doing so.



Table 1: The six ways to arrange two player types, A and B, in
a three-player game.

Seat 1 Seat 2 Seat 3
1 A A B
2 A B A
3 A B B
4 B A A
5 B A B
6 B B A

Table 2: The effect of opponent models on play.
Players Player A Player B
A v. B Score %Win Score %Win

(a) mOTMT v. MTmOT 248.6 74.7 163.8 25.3
(b) mOTMT v. MTMT 235.4 59.0 199.2 41.0
(c) mOTmOT v. MTmOT 198.2 53.5 191.4 46.5
(d) mOTmOT v. MTMT 178.2 44.0 207.3 56.0
(e) mOTMT v. mOTmOT 212.4 37.2 250.8 62.8
(f) MTmOT v. MTMT 157.3 36.0 218.4 64.0

their opponent, which we designate in the subscript. So MTMT is a
player who is attempting to maximize tricks, and assumes the same
about all opponents. MTmOT is also trying to maximize tricks, but
assumes that all opponents are trying to minimize their overtricks.
Players do not do any further recursive opponent modeling.

We arranged the experiments as follows. For each combination
of the two player types and opponent models we played 100 games,
each of which ended after any player reached 300 points. In each
hand players were dealt seven cards from a standard 52 card deck
and searched the game trees in their entirety. A rule-based system
was used to determine player bids, and all players used the same
system. Because there are three players in each game, each game
was repeated with the same cards six times to account for different
arrangements of players at the table (See Table 2). Although the
specific results will vary based on the number of cards, the score
limit for ending games, and the rule-system used for bidding, sim-
ilar trends are found in the data regardless of these parameters.

We report the results of play in Table 2. Each row shows the
average score and percentage of wins for the two listed player types
averaged over the 600 games played3 (100 games for each of the six
combinations of player types). In each game two of the players will
be of the same type and thus that type will have an increased chance
of winning the game. This is offset by the fact that in the other
half of the games that type will only be one of the three players
and so have a lower chance of winning. In summary, if the player
types were equal, they would be expected to win half of the games.
Similarly, even if a player type wins 100% of the games, its average
score would likely be less than 300 because in half of the games
one of the losing players must be of the same type as the winner
and presumably have a score less than 300.

By the rules of the game, we would expect the player who is
minimizing overtricks to do best, and in general they do. This is
particularly noticeable when they have a correct model of their op-
ponent as shown in rows (a) and (b).4 When both players have

3All results reported in this paper have 95% confidence of being
within 7.2 points or less, which is sufficient to support our claims.
4Due to the nature of our experimental setup, one-third of a players’
opponents will actually be of their own type. Hence, when we say
player A has a correct model of its opponent, such as in row (a), we
mean that at least two-thirds of its opponents are correctly modeled.
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Figure 2: Example search tree in Spades.

correct models of each other (a), the mOT player wins 74.7% of
the games. If the MT player does not have a correct model of the
mOT player (b), the win rate drops to 59.0%. However, if the mOT
player also has an incorrect model, the win rate drops to 44.0% and
the preferred evaluation strategy can actually lose. This is a high
price to pay for an incorrect opponent model. Furthermore, we
cannot just assume our opponent is trying to maximize tricks, be-
cause we will do quite poorly against another player who is trying
to minimize his overtricks as shown in row (e).

Lastly, row (f) shows the same results of the importance of cor-
rect modeling when both players try to maximize their tricks. In
this case the average scores are much lower than in other games.
This occurs because both players are using poor strategies, which
increases the variance and thus lowers the average score. Similar
results, not reported here, have been seen in other card games.

Note that because we are only doing one level of opponent mod-
eling, it is important that we both have a correct model of our op-
ponent and that our opponent has a correct model of us. Other-
wise our predictions of our opponents’ behavior will be incorrect.
This explains why the results from row (a) are different from row
(b). In row (b), theMTMT player will behave differently than the
mOTMT player predicted since it expects to be facing an MT op-
ponent. These results indicate that errors in second-level modeling
effects (i.e., my model of my opponent’s model of me) are impor-
tant, but of a smaller magnitude than first-level modeling errors.

3. Soft-Maxn

We propose a new algorithm, soft-maxn, which is more robust
to unknown opponents. We first present the algorithm intuition in
the context of our results in Spades, followed by a more formal
presentation of the algorithm.

First let us briefly return to Figure 1. At node (c) there is a tie
for Player 2, so either move can be chosen, resulting in a score of
6 or a score of 1 for Player 1. Because maxn only backs a single
value up the tree, there is no way for Player 1 at the root to know
the risk of taking move (c). Because a value that is a tie for one
player is not necessarily a tie for the others, there is a risk any time
we encounter a tie in the game tree. The first inclination may be
to remove all ties in the game tree. If all players have a publicly
known total ordering on possible outcomes in a game (i.e., there
are no ties), the maxn algorithm will work “perfectly”, in that this
problem will never arise. In practice, however, players themselves
may only have a partial ordering on outcomes. When there is a
tie in the partial ordering, there may be no way to predict how the
opponent will break that tie.

Even worse, consider Player 2’s decisions in Figure 2, where
there are no ties. In this example, both Player 1 and 2 have bid 1

The only situation where a player has a correct model for all of its
opponents is player B in rows (e) and (f).



Table 3: Dominance relations in maxn sets.
(a) (3, 4, 3)

(b) (2, 1, 7), (4, 2, 4)

(c) (4, 1, 5), (3, 2, 5)

(d) (10, 0, 0), (0, 10, 0), (0, 0, 10)

trick, and we will ignore Player 3 for the time being. Consider the
possible strategies for Player 2. If Player 2 is trying to maximize
tricks, at nodes (a) and (c) the outcome (1, 2, -) is chosen, which
allows Player 1 to make their bid, and at node (b) (0, 2, -) is chosen.
If Player 2 is trying to minimize overtricks, (1, 1, -) will be chosen
at nodes (b) and (c), allowing Player 1 to make their bid, but at node
(a), Player 2 will choose (0, 1, -).

If we think Player 2 is trying to maximize tricks, move (a) and
(c) will have the same value. Barring additional information in the
tie-breaking rules, there is the possibility we will make the wrong
move to (a), missing our bid where moving to (c) would have guar-
anteed our bid. We get similar results if we model Player 2 as trying
to minimize overtricks.

It should be clear that there is a tension between two issues. We
want to avoid ties in our game trees, because they introduce extra
uncertainty in whether we are backing up the correct maxn value.
However, avoiding ties requires detailed knowledge of our oppo-
nent’s preferences, i.e., very specific opponent models. We’ve al-
ready shown, though, that overly specific models can result in poor
performance when the opponent’s play does not correspond to the
chosen model. For example, in Spades it is safe to assume the op-
ponent prefers making their bid to missing it, but it is not safe to
assume an opponent will necessarily avoid taking overtricks. Our
solution, then, is to use generic, less presumptuous, opponent mod-
els, but more intelligently handle the resulting increase in the num-
ber of ties. We will first describe the soft-maxn algorithm and its
alternate tie-breaking mechanism. In the next section we will de-
scribe our formalization of generic opponent models.

3.1 Maxn Sets
Instead of passing a single maxn value up the game tree, the

soft-maxn algorithm backs up sets of maxn values. A maxn set
s contains maxn valuesv1, . . . , vk where each valuevi is a stan-
dard maxn tuple. We combine multiple maxn sets with theunion
operation. The union of two sets is a new set containing all maxn

values that appear in each individual set.
We compare sets using a dominance relationship. A maxn sets1

strictly dominates another maxn sets2 with respect to some player
i if and only if,

∀v1 ∈ s1 ∀v2 ∈ s2 v1[i] > v2[i].

Similarly the maxn sets1 weakly dominatess2 relative to Playeri
if and only if,

∀v1 ∈ s1 ∀v2 ∈ s2 v1[i] ≥ v2[i] and

∃v1 ∈ s1 ∃v2 ∈ s2 v1[i] > v2[i].

We demonstrate these concepts with the values in Table 3. From
the perspective of Player 1, (c) weakly dominates (a), because Player 1’s
scores in (c), 4 and 3, are at least as large as the score of 3 in (a).
From the perspective of Player 2, (a) strictly dominates both (b) and
(c), while from Player 3’s perspective (b) strictly dominates (a), but
does not dominate (c). If each player has a minimum score of 0 and
a maximum score of 10, the set (d) can neither dominate another
set or be strictly dominated by another set.

3.2 The Soft-Maxn Algorithm
Given the definition of a maxn set and dominance relation, we

define soft-maxn as played by playeri as follows:

1. At a leaf node, the maxn set is a heuristic or exact evaluation
function.

2. At an internal node in the tree, the maxn set of values for
that node is the union of all sets from its children that are not
strictly dominated with respect to playerj.

3. At the root of the tree, playeri can use any decision rule to
select the best set from among the non-dominated moves.

At the root of the tree, there are any number of ways to decide
which move to make. For instance, depending on the game state,
we may prefer to maximize potential score, minimize risk, or play
to receive a guaranteed outcome. For all examples in this paper,
we take the move which has the maxn set with the highest average
value. There are obvious arguments why this may be the incorrect
approach as there’s no reason to assume all elements of the set are
equally likely, but it is a simple approach that works in practice,
as we demonstrate in the next section. We are currently exploring
more principled options for making decisions.

We can illustrate soft-maxn using the tree in Figure 2. Recall that
we now use only a generic opponent model for each player, which
means that we will only distinguish between outcomes where our
opponent are choosing to miss or make their bid. Player 1 and 2
each bid one trick. Since Player 2 always takes at least one trick,
instead of returning one or the other result at (a), (b), and (c), we
return a maxn set containing both child values at these nodes. At
the root, Player 1 can, for instance, calculate the worst-case (or
average-case) score on each path. Player 1 is guaranteed to take
one trick on branch (c), so unlike (a) and (b), this move can be
made safely. Thus, under soft-maxn Player 1 can make a more
informed decision about which move to make.

The maxn algorithm has been shown to calculate one of many
possible equilibria in a game. By comparison, Soft-maxn calculates
all equilibria in the game.

LEMMA 1. Soft-maxn calculates a superset of all pure-strategy
equilibria values at every node in a game tree.

Proof. We provide a proof by induction. First consider the leaves
of a game tree. There are only single values in the leaves, so they
must be equilibria for those sub-trees. Next, assume that at thekth
level in the tree we have a maxn set containing a superset of all
equilibria for that subtree. We show by contradiction that at the
(k + 1)th level of the tree we still have a superset of equilibria in
our maxn set.

Assume there is a node,n, at the(k + 1)th level for which soft-
maxn does not return a maxn set which contains a superset of all
equilibria. This means there is some childc whose maxn set con-
tains an equilibrium not backed up into the parent. But, this can
only happen if all values in the maxn set ofc are strictly dominated
by another child ofn. If this is the case, then any individual value
in c will always be dominated, and thus no value inc can be part
of any equilibrium strategy. This is a contradiction, concluding the
proof. 2

We can be certain that all equilibria of the game are included in
the soft-maxn sets. We cannot guarantee however that additional
values will not be included. Informally, the extra values calculated
by soft-maxn will be possible outcomes in the game, if we allow
players to change their strategies at nodes in the middle of a game
where they are indifferent to the possible outcomes.



3.3 Effect on Quality of Play
To demonstrate the effectiveness of soft-maxn, we repeated the

experiments reported in Table 2, but this time the player trying to
minimize overtricks uses soft-maxn and a generic opponent model.
That is, the opponents are only assumed to be trying to make their
bid. We employed the same methodology as in the previous experi-
ments, except that now mOTg refers to the fact that the mOT player
has this generic opponent model. The new results are in Table 3.3.

The new “% Gain” column is the increase in win percentage by
using a generic model instead of an incorrect model. The generic
model results in a substantial increase in the worst-case perfor-
mance of playing an unknown opponent. In every case except
against another mOT player that has modeled it, it is now winning
at least half the games. Thus, if we are playing a game where we are
unsure of the strategies that our opponents are using, we are better
off using a generic model than making the wrong assumption about
how our opponents play. The new “% Loss” column shows the fur-
ther increase in win percentage that could be attained by using a
correctopponent model rather than the general one. This demon-
strates there is still room for improvement if the player can learn a
model of its unknown opponent through play. In the next section
we present a formalization of opponent models and then show how
a specific opponent model can be inferred from opponent decisions.

4. OPPONENT MODELING
In the previous section we showed the improvement gained by

using a generic model of the opponent. In this section we formal-
ize a notion of an opponent model and how generic models can be
constructed. A simple way to distinguish between two players is
based on their evaluation function they use at the leaves of a search
tree, that is, their relative utility of the different possible outcomes
in the game. If an opponent has a total ordering for the possible
outcomes in a game, we can use this information to simulate the
decisions they would make in a game. In practice, a player may
be ambivalent between two similar states. Thus, we model an op-
ponent with a partial ordering defining their preferences over the
possible outcomes in the game.

Formally, anopponent model, is a directed graph where the ver-
tices are possible outcomes of the game. Edges are then used to
encode the preference relationship. We define an opponent model,
O, only by its edge set. In particular,(u, v) ∈ O (i.e., is an edge
in the graph) if and only ifu is preferred tov by the player being
modeled. The graph thus provides a partial ordering over game out-
comes. We assume the graph is closed under transitivity. In other
words, if(u, v) ∈ O and(v, w) ∈ O then(u, w) ∈ O. Since pref-
erences are necessarily transitive, we can always add edges into any
model to form its transitive closure.

Two example opponent models are shown for two-trick Spades
in Figure 3. There are six possible ways the two tricks can be taken
in the game, which are shown on the left side of the figure. If
Player 1 bids one, the models for maximizing tricks and minimizing
overtricks are shown on the right. If the first player is trying to
maximize tricks, they will prefer outcome 6 where they get two
tricks, to all other outcomes. Outcomes 4 and 5 where they get one
trick, would be preferred to outcomes 1, 2 and 3, where they get
none. If Player 1 instead wants to minimize overtricks, they will
have a slightly different model. Player 1 would prefer outcomes
4 and 5 to all other outcomes, and outcome 6 to outcomes 1, 2,
and 3. For many domains, like Spades, the number of possible
outcomes is relatively small and can be enumerated in a graph. In
domains where this is not possible, the graph can be represented
and reasoned over implicitly.
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Figure 3: Two example opponent models for a tiny version of
Spades.
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4 5 6 (bid is made)
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Figure 4: The generalizationof the models from Figure 3.

It is likely that a player will not have a specific model of his op-
ponent. The player, though, may have a set of candidate models,
O1, . . . , Ok, believing that one of these models accurately captures
the opponent’s preferences. We saw in Table 2 that an incorrect
model can have devastating effects on the quality of play. We also
saw that soft-maxn with very generic assumptions about the op-
ponents’ preferences can greatly improve play. This suggests that
given a set of candidate models we want to construct thegeneral-
izationof these models. This generalization should (i) be as specific
as possible, and (ii) be consistent with all of the candidate models.
We can achieve this generalization by simple intersection:

G(O1, . . . , Ok) =

k\
i=1

Oi.

Hence,(u, v) ∈ G(O1, . . . , Ok) if and only if ∀i (u, v) ∈ Oi. In
other words,u is preferred tov in the generalization if and only if
u is preferred tov in all of the candidate models.

In Figure 4 we demonstrate the generalization of the models
from Figure 3. In this case, the generalization of the two candidate
models results in a model where the opponent prefers outcomes in
which they make their bid, but it does not tell us anything beyond
that.

4.1 Opponent Modeling and Soft-Maxn
Given an opponent model, it is easy to make use of it in soft-

maxn by simply defining a dominance rule on maxn sets. Lets1 and
s2 be maxn sets. We says1 strictly dominatess2 under opponent
modelO, if and only if,

∀u1 ∈ s1 ∀u2 ∈ s2 (u1, u2) ∈ O,

and weakly dominates, if and only if,

∀u1 ∈ s1 ∀u2 ∈ s2 (u2, u1) /∈ O and

∃u1 ∈ s1 ∃u2 ∈ s2 (u1, u2) ∈ O.

These definitions of domination can now be used in the soft-maxn

search for any given opponent model. Given a set of candidate
opponent models, we can also construct the generalization of these
models and use that model with soft-maxn.



Table 4: The effect of generalized opponent models on play.
Players Player A Player B
A v. B Score %Win %Gain %Loss Score %Win

(a) mOTg v. MTmOT 241.7 68.5 15.0 6.8 178.2 31.5
(b) mOTg v. MTMT 218.2 53.5 9.5 5.5 206.1 46.5
(c) mOTg v. mOTMT 242.2 54.8 4.8 8.0 228.7 45.2
(d) mOTg v. mOTmOT 230.6 46.0 8.8 4.0 243.8 54.0

In domains where we cannot explicitly enumerate all possible
outcomes in a game, we can instead use a functional model to pro-
vide the same information that we are getting from our explicit
models in Spades.

4.2 Inferring Opponent Models
Without a specific opponent model we have shown that effec-

tive play can be obtained by generalizing a set of candidate mod-
els. During the course of a game, though, we actually observe our
opponents’ decisions. This opens up the possibility of inferring
models of our opponents’ preferences from observations of their
choices. This is no easy task, as it is not generally possible from
observations to distinguish between a player’s preference over out-
comes and simple indifference. Any decision of the opponent can
always be explained as some tie-breaking mechanism on outcomes
over which the player has no preference. Inferenceex nihilomay
be ill-defined, but inference based on a set of candidate models can
still be done.

Given a set of candidate opponent models and a game with de-
cisions by the opponents, we can identify which models are con-
sistent with their actual decisions, and more importantly which are
not. This will not identify which model best captures their pref-
erences, but it can be used to eliminate models which certainly do
not capture their preferences.5 Eliminating these models will make
the generalization of the remaining candidates more specific to the
actual opponent. For example, near the end of a hand of Spades
one may observe the opponent play their final cards so as to avoid
taking a second overtrick, which they could have guaranteed tak-
ing. From this one can infer that the maximizing tricks model is
inconsistent and eliminate it from the candidates. If maximizing
tricks and minimizing overtricks were the only two candidates, one
would then be certain the opponent minimizes overtricks. In later
hands, this more specific model of the opponent can be used.

In order to perform this consistency check we need to reconstruct
the actual decisions an opponent faced during the game. We can do
this by running soft-maxn with generalized models for all of the
players, including ourselves. Hence for any opponent decision we
will have maxn sets, which we know contain the possible outcomes
the opponent was deciding between. Lets1 and s2 be two sets
the opponent decided between, where the actual decision was the
action associated withs1. This decision is definitely inconsistent
with opponent modelO if,

∀u1 ∈ s1 ∀u2 ∈ s2 (u2, u1) ∈ O.

We can perform this consistency check for every candidate model,
for every opponent, for every decision that they made. For each op-
ponent, we eliminate inconsistent models and recompute the gen-
eralization of the remaining models to be used in future soft-maxn

searches against this opponent.

5This is essentially version-space learning [11] where the hypothe-
ses are partial orderings and the training data are decisions the agent
has made.

LEMMA 2. If our opponent is described by some opponent model
Oi and it is common knowledge that all players’ preferences are
consistent with the generalized modelG(O1, . . . , Ok), then our in-
ference is sound, i.e., we will not eliminateOi.

Proof. By Lemma 1 we know that soft-maxn’s values for each
node in the tree is a superset of all equilibria consistent with the
generalized opponent model. Let the opponent’s decision for some
node in the tree be between sets′

1 ands′
2, wheres′

1 was the set that
was chosen. Lets1 ands2 be the soft-maxn sets for this node. Due
to the common knowledge assumption, the soft-maxn sets must be
supersets, i.e.,s′

1 ⊆ s1 ands′
2 ⊆ s2. For purposes of contradiction,

let s2 strictly dominates1 underOi, thus making the opponent’s
decision inconsistent with the model. By the definition of strict
domination and the superset relation, sinces2 strictly dominatess1

underOi, thens′
2 must strictly dominates1 and therefores′

2 must
strictly dominates′

1. Thus all outcomes ins′
2 are preferred tos′

1,
and the opponent could not make this decision. 2

4.3 Inference Experiments
To show the effectiveness of inference in Spades, we created 3

player types, which we refer to as MT, mOT and ML. As before,
the MT player prefers outcomes where more tricks are taken. The
mOT player tries to avoid overtricks. The ML player first tries to
make their bid. But, among the set of hands where the bid is made
or lost, the ML player tries to maximize the number of opponents
that miss their bid.

In these games, one player was trying to infer the types of the
other players only by observing their decisions. There are 9 ways
to combine the 3 opponent types for the two opponents not doing
inference, so we played 100 hands for each of these combinations
for a total of 900 hands. Over these hands we were able to make
423 inferences about opponent types, although several times we
made the same inference about player types multiple times in the
same hand.

Because ML can look like both MT and mOT at times, it was
the hardest to distinguish. We were only able to rule it out for a
player in 51 of the overall hands. We were able to rule out mOT
and MT, though, 106 and 103 times respectively. Combined, we
successfully made an inference about an opponent in about one in
six hands. Correct opponent inferences allow us to use a more spe-
cific model in soft-maxn resulting in 4–8% improvements in win
percentage based on the results in Tables 2 and 3.3. The average
number of hands per game in these results was 15, so this simple
notion of consistency is fast enough to allow us to make game-
altering inferences about our initially unknown opponents.

4.4 Generalizing Domains
Given that we have based so much of our discussion and exper-

imentation on the game of Spades, it may not be immediately ob-
vious how these results can be generalized. Spades makes a good
example because we can easily divide the space of outcomes into
two parts – those outcomes in which a player makes their bid, and



those outcomes in which they don’t. Additionally, it is easy to enu-
merate all outcomes that can ever occur in a Spades game, and then
reason over those outcomes.

But, consider the general case where each player has a utility
in the range{0...1}. In this case there are, in theory, an infinite
number of possible outcomes which we would like to reason over.
In practice, however, we can reduce the number of possible out-
comes using a clustering algorithm, or even more simply, just by
dividing the space of possible utilities into discrete divisions. We
can then assume that opponents are indifferent between outcomes
within each cluster or division.

This is the opposite approach from what is normally taken in
two-player zero-sum games. In these games more accurate utili-
ties, often from increased depth of search, have been directly cor-
related with better play. But, in multi-player games we are seeing
the opposite effect. That is, the more accurately we try to model
our opponent’s utilities, the more likely we are to make a mistake
in our modeling. Thus, we want more generic models of our oppo-
nent that can tolerate small errors.

Thus, the benefits of soft-maxn may be even more apparent in
domains where the number of possible outcomes is larger. Recent
work in 4-player chess [9] suggests that maxn does not perform
well in this domain because it does not consider minor collabora-
tions which could lead to the maxn player losing the game very
quickly. It would be interesting to see if soft-maxn with a generic
opponent model could overcome these shortcomings.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed a new algorithm, soft-maxn, for

playing multi-player games. Soft-maxn avoids many of the draw-
backs of the maxn algorithm, particularly in the face of unknown
opponents. Additionally, we have shown how we can use soft-maxn

to make inferences about the types of opponents we are playing.
This work forms a very promising foundation for future work

in multi-player game-playing. There are still two outstanding is-
sues that must be addressed before soft-maxn can result in human
competitive play. The first is to develop less brittle inference. Al-
though we prove the soundness of our technique, human play will
not likely correspond to any of our preselected opponent models. In
fact, it may not be consistent withanyopponent model, as it may
depend upon external, unobserved circumstances. Hence, our in-
ference could actually eliminate all candidate models in the course
of a few hands, leaving no opponent model available for use with
soft-maxn. We are currently exploring the replacement of our sym-
bolic reasoning with a more probabilistic approach to mitigate this
problem. The second issue is the extension of soft-maxn to imper-
fect information, which is a common feature of multi-player games.
Although Monte-Carlo sampling will allow us to handle the uncer-
tainty during play, the effect of imperfect information on inference
still needs to be addressed.

Finally, we are also working to understand the trade-off between
the deeper search allowed by maxn pruning algorithms, and the
more informed search performed by soft-maxn. It appears that both
approaches have their strengths, depending on the situation at hand.
Future work is still needed to better understand and classify the
relative strengths of each approach.
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